Background: High-dimensional image data including diffusion weighted imaging, diffusion tensor imaging and dynamic imaging are important in exploring the connectivity, cellularity, pharmacokinetic and blood supply. IMAge/enGINE is software especially designed for high-dimensional medical image computing. Methods: IMAge/enGINE is implemented based on open-source and cross-platform tools such as Qt, ITK and VTK. It processes the high-dimensional image data in a slice-by-slice computation mechanism. For computational efficiency, C++ is used for implementing IMAge/enGINE and multi-thread computing is handled in the scale of voxels. The architecture of IMAge/enGINE is modularized for easier extension. Results: IMAge/enGINE has following features: (I) IMAge/enGINE is free for research use; (II) it has an easy-to-use graphic user interface designed for clinical users without programming or engineering background; (III) its frame work is open-source and extensible. Developers can implement algorithms as modules and integrate them into IMAge/enGINE or generate their own application.
Antisense oligodeoxynucleotide (ASODN) can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing, in turn, plays antitumor therapeutic roles. In the study, a novel HIF-1α ASODN-loaded nanocomposite was formulated to efficiently deliver gene to the target RNA. The physicochemical properties of nanocomposite were characterized using TEM, FTIR, DLS and zeta potentials. The mean diameter of resulting GEL-DGL-FA-ASODN-DCA nanocomposite was about 170–192 nm, and according to the agarose gel retardation assay, the loading amount of ASODN accounted for 166.7 mg/g. The results of cellular uptake showed that the nanocomposite could specifically target to HepG2 and Hela cells. The cytotoxicity assay demonstrated that the toxicity of vectors was greatly reduced by using DCA to reversibly block the cationic DGL. The subcellular distribution images clearly displayed the lysosomal escape ability of the DCA-modified nanocomposite.
In vitro
exploration of molecular mechanism indicated that the nanocomposite could inhibit mRNA expression and
HIF-1α
protein translation at different levels.
In vivo
optical images and quantitative assay testified that the formulation accumulated preferentially in the tumor tissue.
In vivo
antitumor efficacy research confirmed that this nanocomposite had significant antitumor activity and the tumor inhibitory rate was 77.99%. These results manifested that the GEL-DGL-FA-ASODN-DCA nanocomposite was promising in gene therapeutics for antitumor by interacting directly with target RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.