Analyses of single-post-event polarimetric synthetic aperture radar (PolSAR) data permit fast and convenient post-disaster damage assessment work. By analyzing valid features, damaged and undamaged buildings can be quickly classified. However, the presence of oriented buildings in the disaster area makes the classification work more challenging. Many previous works extract the damage information of the disaster area by considering oriented buildings and undamaged parallel buildings as survived buildings. However, after-effect debris may create structures with random orientation angles. In our study on the Tohoku earthquake/tsunami disaster event, we found that some damaged buildings with large building orientation angles (with respect to the satellite flight path) are grouped as oriented buildings (undamaged buildings). In this paper, we propose a new earthquake/tsunami damage assessment method, particularly for urban areas, that takes this complex situation into consideration. The proposed method solves the problems of both urban-area extraction and damaged-building identification. For urban-area extraction, the proposed combined thresholding and majority voting method can accurately discriminate between urban and foreshortening mountain areas. Meanwhile, for damaged-building identification, the proposed new unsupervised damage assessment method classifies the buildings in a disaster area according to four conditions, and it outperforms the techniques used in existing works. The analysis results and the comparison with the supervised support vector machine (SVM) classification technique show that our proposed method can produce more accurate results for damage assessment using single-post-event PolSAR data.
A segmentation-based fully-polarimetric synthetic aperture radar (PolSAR) image classification method that incorporates texture features and color features is designed and implemented. This method is based on the framework that conjunctively uses statistical region merging (SRM) for segmentation and support vector machine (SVM) for classification. In the segmentation step, we propose an improved local binary pattern (LBP) operator named the regional homogeneity local binary pattern (RHLBP) to guarantee the regional homogeneity in PolSAR images. In the classification step, the color features extracted from false color images are applied to improve the classification accuracy. The RHLBP operator and color features can provide discriminative information to separate those pixels and regions with similar polarimetric features, which are from different classes. Extensive experimental comparison results with conventional methods on L-band PolSAR data demonstrate the effectiveness of our proposed method for PolSAR image classification.
This paper was aimed at estimating the forest aboveground biomass (AGB) in the Central Kalimantan tropical peatland forest, Indonesia, using polarimetric parameters extracted from RadarSAT-2 images. Six consecutive acquisitions of RadarSAT-2 full polarimetric data were acquired and polarimetric parameters were extracted. The backscattering coefficient ( σ o ) for HH, HV, VH, and VV channels was computed respectively. Entropy (H) and alpha ( α ) were computed using eign decomposition. In order to understand the scattering behavior, Yamaguchi decomposition was performed to estimate surface scattering ( γ s u r f ) and volume scattering ( γ v o l ) components. Similarly following polarimetric indices were computed; Biomass Index (BMI), Canopy Structure Index (CSI), Volume Scattering Index (VSI), Radar Vegetation Index (RVI) and Pedestal Height ( p h ). The PolSAR parameters were evaluated in terms of their temporal consistency, inter-dependence, and suitability for forest aboveground biomass estimation across rainy and dry conditions. Regression analysis was performed between referenced biomass measurements and polarimetric parameters; VSI, H, RVI, p h , and γ v o l were found significantly correlated with AGB. Biomass estimation was carried out using significant models. Resultant models were validated using field-based AGB measurements. Validation results show a significant correlation between measured and referenced biomass measurements with temporal consistency over the acquisition time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.