Graphene and transition metal dichalcogenides (TMDCs) are the two major types of layered materials under intensive investigation. However, the zero-bandgap nature of graphene and the relatively low mobility in TMDCs limit their applications. Here we reintroduce black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, to the layered-material family. For 15-nm-thick BP, we measure a Hall mobility of 1,000 and 600 cm 2 V À 1 s À 1 for holes along the light (x) and heavy (y) effective mass directions at 120 K. BP thin films also exhibit large and anisotropic in-plane optical conductivity from 2 to 5 mm. Field-effect transistors using 5 nm BP along x direction exhibit an on-off current ratio exceeding 10 5 , a field-effect mobility of 205 cm 2 V À 1 s À 1 , and good current saturation characteristics all at room temperature. BP shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.
Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.
New layered anisotropic infrared semiconductors, black arsenic-phosphorus (b-AsP), with highly tunable chemical compositions and electronic and optical properties are introduced. Transport and infrared absorption studies demonstrate the semiconducting nature of b-AsP with tunable bandgaps, ranging from 0.3 to 0.15 eV. These bandgaps fall into the long-wavelength infrared regime and cannot be readily reached by other layered materials.
Deceased-donor acute kidney injury (AKI) is associated with organ discard and delayed graft function, but data on longer-term allograft survival are limited. We performed a multicenter study to determine associations between donor AKI (from none to severe based on AKI Network stages) and all-cause graft failure, adjusting for donor, transplant, and recipient factors. We examined whether any of the following factors modified the relationship between donor AKI and graft survival: kidney donor profile index, cold ischemia time, donation after cardiac death, expanded-criteria donation, kidney machine perfusion, donor-recipient gender combinations, or delayed graft function. We also evaluated the association between donor AKI and a 3-year composite outcome of all-cause graft failure or estimated glomerular filtration rate ≤ 20 mL/min/1.73m2 in a subcohort of 30% of recipients. Among 2,430 kidneys transplanted from 1,298 deceased donors, 585 (24%) were from donors with AKI. Over a median follow-up of 3.7 years, there were no significant differences in graft survival by donor AKI stage. We found no evidence that pre-specified variables modified the effect of donor AKI on graft survival. In the subcohort, donor AKI was not associated with the 3-year composite outcome. Donor AKI was not associated with graft failure in this well-phenotyped cohort. Given the organ shortage, the transplant community should consider measures to increase utilization of kidneys from deceased donors with AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.