Traditional gene selection methods for microarray data mainly considered the features' relevance by evaluating their utility for achieving accurate predication or exploiting data variance and distribution, and the selected genes were usually poorly explicable. To improve the interpretability of the selected genes as well as prediction accuracy, an improved gene selection method based on binary particle swarm optimization (BPSO) and prior information is proposed in this paper. In the proposed method, BPSO encoding gene-to-class sensitivity (GCS) information is used to perform gene selection. The gene-to-class sensitivity information, extracted from the samples by extreme learning machine (ELM), is encoded into the selection process in four aspects: initializing particles, updating the particles, modifying maximum velocity, and adopting mutation operation adaptively. Constrained by the gene-to-class sensitivity information, the new method can select functional gene subsets which are significantly sensitive to the samples' classes. With the few discriminative genes selected by the proposed method, ELM, K-nearest neighbor and support vector machine classifiers achieve much high prediction accuracy on five public microarray data, which in turn verifies the efficiency and effectiveness of the proposed gene selection method.
Snore related signals (SRS) have been found to carry important information about the snore source and obstruction site in the upper airway of an Obstructive Sleep Apnea/Hypopnea Syndrome (OSAHS) patient. An overnight audio recording of an individual subject is the preliminary and essential material for further study and diagnosis. Automatic detection, segmentation and classification of SRS from overnight audio recordings are significant in establishing a personal health database and in researching the area on a large scale. In this study, the authors focused on how to implement this intelligent method by combining acoustic signal processing with machine learning techniques. The authors proposed a systematic solution includes SRS events detection, classifier training, automatic segmentation and classification. An overnight audio recording of a severe OSAHS patient is taken as an example to demonstrate the feasibility of their method. Both the experimental data testing and subjective testing of 25 volunteers (17 males and 8 females) demonstrated that their method could be effective in automatic detection, segmentation and classification of the SRS from original audio recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.