1. The purpose of this study was to establish a population pharmacokinetic (PK) model of tacrolimus and evaluate the influence of clinical covariates, including the genetic polymorphisms of the cytochrome P450 3A5 gene (CYP3A5) and gene-encoding P-glycoprotein (ABCB1), on the PK parameters in Chinese adult liver transplant recipients. 2. Details of drug dose, sampling times and concentrations were collected retrospectively from routine therapeutic drug monitoring data early after liver transplant. Tacrolimus PKs was studied by a non-linear mixed-effect modeling (NONMEM) method. CYP3A5 genotypes, ABCB1 C3435T and G2677T/A polymorphism and a number of clinical covariates were tested for their influence on TAC PKs. 3. A one-compartment model with first-order absorption and elimination adequately described the data. Apparent clearance (CL/F) and apparent volumes of distribution (V/F) in final population model were 17.6 L/h and 225 L, respectively. The absorption rate constant (Ka) was fixed at 4.48 h(-1). The inter-individual variability in CL/F and V/F was 53.9 and 68%, respectively. In the final model, CYP3A5 genotype, post-operative day, alanine aminotransferase, total bilirubin, hematocrit and blood urea nitrogen were found to significantly influence the CL/F, whereas POD and HB influence V/F. 4. Population PK analysis of tacrolimus in Chinese adult liver transplant patients resulted in identification of the CYP3A5 genotype, POD, BUN, ALP, HCT, TBIL and HB as significant covariates on the PK parameters of tacrolimus.
Long-term exposure to benzene causes several adverse health effects, including an increased risk of acute myeloid leukemia. This study was to identify genetic alternations involved in pathogenesis of leukemia in benzene-exposed workers without clinical symptoms of leukemia. This study included 33 shoe-factory workers exposed to benzene at levels from 1 ppm to 10 ppm. These workers were divided into 3 groups based on the benzene exposure time, 1- < 7, 7- < 12, and 12- < 24 years. 17 individuals without benzene exposure history were recruited as controls. Cytogenetic analysis using Affymetrix Cytogenetics Array found copy-number variations (CNVs) in several chromosomes of benzene-exposed workers. Expression of targeted genes in these altered chromosomes, NOTCH1 and BSG, which play roles in leukemia pathogenesis, was further examined using real-time PCR. The NOTCH1 mRNA level was significantly increased in all 3 groups of workers, and the NOTCH1 mRNA level in the 12- < 24 years group was significantly higher than that in 1- < 7 and 7- < 12 years groups. Compared to the controls, the BSG mRNA level was significantly increased in 7- < 12 and 12- < 24 years groups, but not in the 1- < 7 years group. These results suggest that CNVs and leukemia-related gene expression might play roles in leukemia development in benzene-exposed workers.
Environmentally persistent organic pollutant (POP) is the general term for refractory organic compounds that show long-range atmospheric transport, environmental persistence, and bioaccumulation. It has been reported that the accumulation of POPs could lead to cellular DNA damage and adverse effects of on metabolic health. To better understand the mechanism of the health risks associated with POPs, we conducted an evidence-based cohort investigation (n = 5,955) at the Jinghai e-waste disposal center in China from 2009 to 2016, where people endure serious POP exposure. And high levels of aging-related diseases, including hypertension, diabetes, autoimmune diseases, and reproductive disorders were identified associated with the POP exposure. In the subsequent molecular level study, an increased telomere dysfunction including telomere multiple telomere signals, telomere signal-free ends, telomere shortening and activation of alternative lengthening of telomeres were observed, which might result from the hypomethylated DNA modification induced telomeric repeat-containing RNA overexpression. Moreover, dysfunctional telomere-leaded senescence-associated secretory phenotype was confirmed, as the proinflammatory cytokines and immunosenescence hallmarks including interleukin-6, P16INK4a, and P14ARF were stimulated. Thus, we proposed that the dysfunctional telomere and elevated systemic chronic inflammation contribute to the aging-associated diseases, which were highly developed among the POP exposure individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.