Purpose: Gadolinium-based dynamic susceptibility contrast (DSC) is commonly used to characterize blood flow in patients with stroke and brain tumors. Unfortunately, gadolinium contrast administration has been associated with adverse reactions and long-term accumulation in tissues. In this work, we propose an alternative deoxygenation-based DSC (dDSC) method that uses a transient hypoxia gas paradigm to deliver a bolus of paramagnetic deoxygenated hemoglobin to the cerebral vasculature for perfusion imaging. Methods: Through traditional DSC tracer kinetic modeling, the MR signal change induced by this hypoxic bolus can be used to generate regional perfusion maps of cerebral blood flow, cerebral blood volume, and mean transit time. This gas paradigm and blood-oxygen-level-dependent (BOLD)-MRI were performed concurrently on a cohort of 66 healthy and chronically anemic subjects (age 23.5 ± 9.7, female 64%). Results: Our results showed reasonable global and regional agreement between dDSC and other flow techniques, such as phase contrast and arterial spin labeling. Conclusion: In this proof-of-concept study, we demonstrated the feasibility of using transient hypoxia to generate a contrast bolus that mimics the effect of gadolinium and yields reasonable perfusion estimates. Looking forward, optimization of the hypoxia boluses and measurement of the arterial-input function is necessary to improve the accuracy of dDSC. Additionally, a cross-validation study of dDSC and DSC in brain tumor and ischemic stroke subjects is warranted to evaluate the clinical diagnostic utility of this approach.
Although modern medical management has lowered overt stroke occurrence in patients with sickle cell disease (SCD), progressive white matter (WM) damage remains common. It is known that cerebral blood flow (CBF) increases to compensate for anemia, but sufficiency of cerebral oxygen delivery, especially in the WM, has not been systematically investigated. Cerebral perfusion was measured by arterial spin labeling in 32 SCD patients (age range: 10‐42 years old, 14 males, 7 with HbSC, 25 HbSS) and 25 age and race‐matched healthy controls (age range: 15‐45 years old, 10 males, 12 with HbAS, 13 HbAA); 8/24 SCD patients were receiving regular blood transfusions and 14/24 non‐transfused SCD patients were taking hydroxyurea. Imaging data from control subjects were used to calculate maps for CBF and oxygen delivery in SCD patients and their T‐score maps. Whole brain CBF was increased in SCD patients with a mean T‐score of 0.5 and correlated with lactate dehydrogenase (r2 = 0.58, P < 0.0001). When corrected for oxygen content and arterial saturation, whole brain and gray matter (GM) oxygen delivery were normal in SCD, but WM oxygen delivery was 35% lower than in controls. Age and hematocrit were the strongest predictors for WM CBF and oxygen delivery in patients with SCD. There was spatial co‐localization between regions of low oxygen delivery and WM hyperintensities on T2 FLAIR imaging. To conclude, oxygen delivery is preserved in the GM of SCD patients, but is decreased throughout the WM, particularly in areas prone to WM silent strokes.
AIMTo investigate the correlation of iodine concentration (IC) generated by spectral computed tomography (CT) with micro-vessel density (MVD) and vascular endothelial growth factor (VEGF) expression in patients with advanced gastric carcinoma (GC).METHODSThirty-four advanced GC patients underwent abdominal enhanced CT in the gemstone spectral imaging mode. The IC of the primary lesion in the arterial phase (AP) and venous phase (VP) were measured, and were then normalized against that in the aorta to provide the normalized IC (nIC). MVD and VEGF were detected by immunohistochemical assays, using CD34 and VEGF-A antibodies, respectively. Correlations of nIC with MVD, VEGF, and clinical-pathological features were analyzed.RESULTSBoth nICs correlated linearly with MVD and were higher in the primary lesion site than in the normal control site, but were not correlated with VEGF expression. After stratification by clinical-pathological subtypes, nIC-AP showed a statistically significant correlation with MVD, particularly in the group with tumors at stage T4, without nodular involvement, of a mixed Lauren type, where the tumor was located at the antrum site, and occurred in female individuals. nIC-VP showed a positive correlation with MVD in the group with the tumor at stage T4 and above, had nodular involvement, was poorly differentiated, was located at the pylorus site, of a mixed and diffused Lauren subtype, and occurred in male individuals. nIC-AP and nIC-VP showed significant differences in terms of histological differentiation and Lauren subtype.CONCLUSIONThe IC detected by spectral CT correlated with the MVD. nIC-AP and nIC-VP can reflect angiogenesis in different pathological subgroups of advanced GC.
Purpose To investigate possible sources of quantification errors in global cerebral blood flow (CBF) measurements by comparing pseudo continuous arterial spin labeling (PCASL) and phase contrast (PC) MRI in anemic, hyperemic subjects. Methods All studies were performed on a Philips 3T Achieva MRI scanner. PC and PCASL CBF examinations were performed in 10 healthy, young adult subjects and 18 young adults with chronic anemia syndromes including sickle cell disease and thalassemia. CBF estimates from single and two compartment ASL kinetic models were compared. Numerical simulation and flow phantom experiments were used to explore the effects of blood velocity and B1+ on CBF quantification and labeling efficiency. Results PCASL CBF underestimated PC in both populations using a single compartment model (30.1±9.2% control, 45.2±17.2% anemia). Agreement substantially improved using a two-compartment model (−8.0 ± 6.0% control, 11.7 ± 12.3% anemia). Four of the anemic subjects exhibited venous outflow of ASL signal, suggestive of cerebrovascular shunt, possibly confounding PC-PCASL comparisons. Additionally, sub-study experiments demonstrated that B1+ was diminished at the labeling plane (82.9 ± 5.1%), resulting in suboptimal labeling efficiency. Correcting labeling efficiency for diminished B1+, PCASL slightly overestimated PC CBF in controls (−15.4 ± 6.8%) and resulted in better matching of CBF estimates in anemic subjects (0.7 ± 10.0% without outflow, 10.5 ± 9.4% with outflow). Conclusions This work demonstrates that a two-compartment model is critical for PCASL quantification in hyperemic subjects. Venous outflow and B1+ under-excitation may also contribute to flow underestimation, but further study of these effects is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.