Severe chronic anemia is an independent predictor of overt stroke, white matter damage, and cognitive dysfunction in the elderly. Severe anemia also predisposes to white matter strokes in young children, independent of the anemia subtype. We previously demonstrated symmetrically decreased white matter (WM) volumes in patients with sickle cell disease (SCD). In the current study, we investigated whether patients with non-sickle anemia also have lower WM volumes and cognitive dysfunction. Magnetic Resonance Imaging was performed on 52 clinically asymptomatic SCD patients (age = 21.4 ± 7.7; F = 27, M = 25; hemoglobin = 9.6 ± 1.6 g/dL), 26 non-sickle anemic patients (age = 23.9 ± 7.9; F = 14, M = 12; hemoglobin = 10.8 ± 2.5 g/dL) and 40 control subjects (age = 27.7 ± 11.3; F = 28, M = 12; hemoglobin = 13.4 ± 1.3 g/dL). Voxel-wise changes in WM brain volumes were compared to hemoglobin levels to identify brain regions that are vulnerable to anemia. White matter volume was diffusely lower in deep, watershed areas proportionally to anemia severity. After controlling for age, sex, and hemoglobin level, brain volumes were independent of disease. WM volume loss was associated with lower Full Scale Intelligence Quotient (FSIQ; P = .0048; r 2 = .18) and an abnormal burden of silent cerebral infarctions (P = .029) in males, but not in females.Hemoglobin count and cognitive measures were similar between subjects with and without white-matter hyperintensities. The spatial distribution of volume loss suggests chronic hypoxic cerebrovascular injury, despite compensatory hyperemia.
Neurocognitive consequences of WM volume changes and silent cerebral infarctionwere strongly sexually dimorphic. Understanding the possible neurological consequences of chronic anemia may help inform our current clinical practices.