Background and purpose:Eucommia ulmoides polysaccharides (EUP) can regulate the immunity of macrophages, but the functional status of macrophages is related to osteoarthritis and synovial inflammation. The purpose of this study is to explore whether EUP has the effect of inhibiting osteoarthritis and its possible mechanism.Methods: MTT test was used to evaluate the appropriate concentration of EUP and real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the effect of EUP on gene expression in RAW 264.7 cells. The osteoarthritis model was constructed by the anterior cruciate ligament transection (ACLT) in the rabbits. These rabbits were divided into three groups, sham operation group, OA group, and EUP group. The changes in articular cartilage were detected by gross observation and histological staining, and Micro-CT tested subchondral bone. Finally, the changes of macrophages in synovial tissue were studied by immunohistochemistry.Results: The results showed that EUP at the concentration of 50ug/mL and 100ug/mL were beneficial to the proliferation of macrophages. The qPCR results indicated that EUP inhibited the expression of inflammation-related genes IL-6, IL-18 and IL-1β, and promoted the expression of osteogenic and cartilage-related genes BMP-6, Arg-1 and transforming growth factor beta (TGF-β). The results of in vivo experiments suggested that the degree of destruction of articular cartilage in the EUP group was significantly reduced, and the Osteoarthritis Research Society International (OARSI) score was significantly reduced. Compared with the OA group, the subchondral cancellous bone density of the EUP group increased, the number and thickness of trabecular bone increased, and the separation of trabecular bone decreased. Synovial macrophage immunohistochemistry results manifested that EUP, on the one hand, reduced M1 polarized macrophages, on the other hand, accumulated M2 polarized macrophages.Conclusion: EUP can promote articular cartilage repair and subchondral bone reconstruction. The regulation of the polarization state of macrophages may be one of its mechanisms to delay the progression of osteoarthritis.
Background: Malaria among pregnant women is one of the major causes of maternal and infant mortality and morbidity, especially in high-risk areas. Therefore, our study identified the burden of malaria for pregnant women, non-pregnant women, and children under 5 years of age, and malaria service health facilities in Bannu district, Khyber Pakhtunkhwa, Pakistan.Methods: A cross-sectional study was conducted. In this survey, 15,650 individuals were surveyed, and 1,283 were malaria-positive detected. The data were collected from 80 different healthcare centers. SPSS version 23 was used for data analysis. ArcGIS version 10.8 was used for study area mapping.Results: Malaria was detected in 23.3% of children under five, 4.4% of pregnant women, and 72.3% of non-pregnant women, respectively. Moreover, P. falciparum, P. vivax, and mixed infection had a prevalence of 2.1, 96.8, and 1.1%. The most often used and effective medications to treat malaria were chloroquine (29.7%) and primaquine (69.4%).Conclusion: This study's findings depict that malaria's prevalence in the non-pregnant women's group was high. Additionally, P. vivax infection was found to be more prevalent than other types of malaria infection. Due to the scarcity of healthcare facilities in this endemic region, special attention should be directed to strengthening the malaria surveillance and eradication programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.