Kinesin family member C1 (KIFC1, also known as HSET) is a minus end-directed motor protein, which is critical in centrosome clustering. The present study investigated the expression of KIFC1 in paired hepatocellular carcinoma (HCC) tissues and adjacent non-cancerous tissues from 91 patients by immunohistochemical analysis; clinical data were concomitantly collected. KIFC1 was expressed at high levels in HCC tissues, compared with that in peritumoral tissues (54.9 vs. 14.3%; P<0.01), and its expression correlated with tumor emboli, metastasis, recurrence and time of recurrence. Kaplan-Meier analysis showed that the expression of KIFC1 was significantly associated with tumor-free survival rates. In addition, multivariate analyses revealed that the overexpression of KIFC1was an independent predictive marker in patients with HCC. Consistently, data derived from GEPIA was in agreement with the results. In vitro, KIFC1 knockdown effectively decreased HCC cell viability, and induced apoptosis and cell death. KIFC1 knockdown also significantly suppressed tumor cell migration and invasion in vitro. Mechanistically, the apoptosis-related protein, B-cell lymphoma-2 (Bcl-2), was downregulated in KIFC1 small interfering RNA-treated groups, whereas thee levels of Bcl-2-associated X protein and p53 were upregulated. In addition, the expression levels of phosphorylated phosphoinositide 3-kinase and phosphorylated AKT were decreased significantly when KIFC1 was silenced. The epithelial-mesenchymal transition-related proteins, N-cadherin, matrix metalloproteinase-2 (MMP-2), β-catenin, Slug, and Zinc finger E-box-binding homeobox 1, were downregulated, whereas the expression of E-cadherin was upregulated. The overexpression of KIFC1 was correlated closely with the progression of HCC and poor prognosis, and suggested that the expression levels of KIFC1 are a potential prognostic biomarker and therapeutic target in HCC.
Increasing evidences have revealed that long noncoding RNAs (lncRNAs) are frequently involved in various cancers. However, the expression and function of lncRNA DRAIC in nasopharyngeal carcinoma (NPC) remain unknown. In this study, we found that DRAIC was significantly increased in NPC tissues. Increased expression of DRAIC was positively correlated with advanced clinical stages of NPC patients. Functional assays revealed that ectopic expression of DRAIC enhances NPC cell growth, migration and invasion. DRAIC knockdown represses NPC cell growth, migration and invasion. Mechanistically, we identified two miR-122 binding sites on DRAIC. RNA pull-down, RNA immunoprecipitation, and dualluciferase reporter assays confirmed the binding of DRAIC to miR-122. Via binding of miR-122, DRAIC upregulated the expression of miR-122 target SATB1, which was abolished by the mutation of miR-122 binding sites on SATB1. Moreover, the oncogenic roles of DRAIC on NPC were reversed by the mutation of miR-122 binding sites on SATB1, simultaneous overexpression of miR-122, or depletion of SATB1. In addition, the expression of SATB1 was also increased and positively associated with that of DRAIC in NPC tissues. In conclusion, these findings revealed the important roles of DRAIC-miR-122-SATB1 axis in NPC and suggested that DRAIC may be a potential therapeutic target for NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.