Low-energy laser irradiation (LELI) has been found to modulate biological processes. The present study investigated the effect of LELI on infarct size after chronic myocardial infarction (MI) and ischemia-reperfusion injury in rats. The left anterior descending (LAD) coronary artery was ligated in 83 rats to create MI or ischemia-reperfusion injury. The hearts of the laser-irradiated (LI) rats received irradiation after LAD coronary artery occlusion and 3 days post-MI. At 14, 21, and 45 days post-LAD coronary artery permanent occlusion, infarct sizes (percentage of left ventricular volume) in the non-laser-irradiated (NLI) rats were 52 +/- 12 (SD), 47 +/- 11, and 34 +/- 7%, respectively, whereas in the LI rats they were significantly lower, being 20 +/- 8, 15 +/- 6, and 10 +/- 4%, respectively. Left ventricular dilatation (LVD) in the chronic infarcted rats was significantly reduced (50-60%) in LI compared with NLI rats. LVD in the ischemia-reperfusion-injured LI rats was significantly reduced to a value that did not differ from intact normal noninfarcted rats. Laser irradiation caused a significant 2.2-fold elevation in the content of inducible heat shock proteins (specifically HSP70i) and 3.1-fold elevation in newly formed blood vessels in the heart compared with NLI rats. It is concluded that LELI caused a profound reduction in infarct size and LVD in the rat heart after chronic MI and caused complete reduction of LVD in ischemic-reperfused heart. This phenomenon may be partially explained by the cardioprotective effect of the HSP70i and enhanced angiogenesis in the myocardium after laser irradiation.
The effect of low energy laser (He-Ne) irradiation (LELI) on the process of angiogenesis in the infarcted rat heart and in the chick chorioallantoic membrane (CAM), as well as the proliferation of endothelial cells in tissue culture, was investigated. Formation of new blood vessels in the infarcted rat heart was monitored by counting proliferating endothelial cells in blood vessels. In the CAM model, defined areas were laser-irradiated or nonirradiated and blood vessel density was recorded in each site in the CAM at various time intervals. Laser irradiation caused a 3.1-fold significant increase in newly formed blood vessels 6 days post infarction, as compared with nonirradiated rats. In the CAM model, a slight inhibition of angiogenesis up to 2 days post irradiation and a significant enhancement of angiogenesis in the laser-irradiated foci as compared with control nonirradiated spots were evident. The LELI caused a 1.8-fold significant increase in the rate of proliferation in endothelial cells in culture over nonirradiated cells. It is concluded that LELI can promote the proliferation of endothelial cells in culture, which may partially explain the augmentation of angiogenesis in the CAM model and in the infarcted heart. These results may have clinical significance by offering therapeutic options to ameliorate angiogenesis in ischemic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.