In zebrafish, the pineal gland is a photoreceptive organ that contains an intrinsic circadian oscillator and exhibits rhythmic arylalkylamine-N-acetyltransferase (zfaanat2) mRNA expression. In the present study, we investigated the role of light and of a clock gene, zperiod2 (zper2), in the development of this rhythm. Analysis of zfaanat2 mRNA expression in the pineal gland of 3-day-old zebrafish embryos after exposure to different photoperiodic regimes indicated that light is required for proper development of the circadian clock-controlled rhythmic expression of zfaanat2, and that a 1-h light pulse is sufficient to initiate this rhythm. Analysis of zper2 mRNA expression in zebrafish embryos exposed to different photoperiodic regimes indicated that zper2 expression is transiently up-regulated by light but is not regulated by the circadian oscillator. To establish the association between light-induced zper2 expression and light-induced clock-controlled zfaanat2 rhythm, zPer2 knock-down experiments were performed. The zfaanat2 mRNA rhythm, induced by a 1-h light pulse, was abolished in zPer2 knock-down embryos. These experiments indicated that light-induced zper2 expression is crucial for establishment of the clock-controlled zfaanat2 rhythm in the zebrafish pineal gland.
Low-energy laser irradiation (LELI) has been found to modulate biological processes. The present study investigated the effect of LELI on infarct size after chronic myocardial infarction (MI) and ischemia-reperfusion injury in rats. The left anterior descending (LAD) coronary artery was ligated in 83 rats to create MI or ischemia-reperfusion injury. The hearts of the laser-irradiated (LI) rats received irradiation after LAD coronary artery occlusion and 3 days post-MI. At 14, 21, and 45 days post-LAD coronary artery permanent occlusion, infarct sizes (percentage of left ventricular volume) in the non-laser-irradiated (NLI) rats were 52 +/- 12 (SD), 47 +/- 11, and 34 +/- 7%, respectively, whereas in the LI rats they were significantly lower, being 20 +/- 8, 15 +/- 6, and 10 +/- 4%, respectively. Left ventricular dilatation (LVD) in the chronic infarcted rats was significantly reduced (50-60%) in LI compared with NLI rats. LVD in the ischemia-reperfusion-injured LI rats was significantly reduced to a value that did not differ from intact normal noninfarcted rats. Laser irradiation caused a significant 2.2-fold elevation in the content of inducible heat shock proteins (specifically HSP70i) and 3.1-fold elevation in newly formed blood vessels in the heart compared with NLI rats. It is concluded that LELI caused a profound reduction in infarct size and LVD in the rat heart after chronic MI and caused complete reduction of LVD in ischemic-reperfused heart. This phenomenon may be partially explained by the cardioprotective effect of the HSP70i and enhanced angiogenesis in the myocardium after laser irradiation.
The present study describes for the first time the ability of LLLT to significantly prevent degeneration following ischemia/reperfusion injury in skeletal muscles, probably by induction of synthesis of antioxidants and other cytoprotective proteins, such as hsp-70i. The elevation of antioxidants was also evident in intact muscle following LLLT. The above phenomenon may also be of clinical relevance in scheduled surgery or microsurgery requiring extended tourniquet applications to skeletal muscle followed by reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.