The fundamental idea that the constituents of interacting many body systems in complex quantum materials may self-organise into long range order under highly non-equilibrium conditions leads to the notion that entirely new and unexpected functionalities might be artificially created. However, demonstrating new emergent order in highly non-equilibrium transitions has proven surprisingly difficult. In spite of huge recent advances in experimental ultrafast time-resolved techniques, methods that average over successive transition outcomes have so far proved incapable of elucidating the emerging spatial structure. Here, using scanning tunneling microscopy, we report for the first time the charge order emerging after a single transition outcome initiated by a single optical pulse in a prototypical two-dimensional dichalcogenide 1T-TaS 2. By mapping the vector field of charge displacements of the emergent state, we find surprisingly intricate, long-range, topologically non-trivial charge order in which chiral domain tiling is intertwined with unpaired dislocations which play a crucial role in enhancing the emergent states' remarkable stability. The discovery of the principles that lead to metastability in charge-ordered systems opens the way to designing novel emergent functionalities, particularly ultrafast all-electronic non-volatile cryo-memories.
We report comprehensive (magneto)transport studies of the two-phase state in (TMTSF) 2 ClO 4 , where superconducting (SC) phase coexists with spin-density wave insulator (SDW). By tuning the degree of ClO 4 anion ordering in controlled manner we smoothly suppress the SDW state and study resulting evolution of the SC phase spatial texture. We find that as SDW is suppressed, SC regions initially appear inside the SDW insulator in a form of filaments extended in the interlayer direction and further merge into the two-dimensional sheets across the most conducting axis of the crystal. We demonstrate that almost all our results can be explained within the soliton phase model, though with several assumptions they can also be related with the creation of non-uniform deformations. We believe that the anisotropy is intrinsic to SC/SDW coexistence in various quasi one-dimensional superconductors.
Mesoscopic irregularly ordered and even amorphous self-assembled electronic structures were recently reported in two-dimensional metallic dichalcogenides (TMDs), created and manipulated with short light pulses or by charge injection. Apart from promising new all-electronic memory devices, such states are of great fundamental importance, since such aperiodic states cannot be described in terms of conventional charge-density-wave (CDW) physics. In this paper, we address the problem of metastable mesoscopic configurational charge ordering in TMDs with a sparsely filled charged lattice gas model in which electrons are subject only to screened Coulomb repulsion. The model correctly predicts commensurate CDW states corresponding to different TMDs at magic filling fractions = / / / / / f 1 3, 1 4, 1 9, 1 13, 1 16.mDoping away from f m results either in multiple neardegenerate configurational states, or an amorphous state at the correct density observed by scanning tunnelling microscopy. Quantum fluctuations between degenerate states predict a quantum charge liquid at low temperatures, revealing a new generalized viewpoint on both regular, irregular and amorphous charge ordering in transition metal dichalcogenides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.