Many models of various non‐Newtonian fluid flows for different geometries are available for analyzing the mass and heat transfer. Nevertheless, for researchers, it is challenging to choose the most suitable model for a specific geometry. Here, we have adopted a modified Buongiorno model to explore the impact of activation energy on the Casson hybrid nanofluid flow over an upward/downward‐moving rotating disk filled with the gyrotactic microorganisms. Moreover, the external magnetic field can establish the magnetic effect, which normalizes the features of heat, mass transfer, and fluid flow. Here, we used silver and copper as nanoparticles suspended in human blood as the carrier fluid. The modeled partial differential equations are converted to ordinary differential equations by opting suitable similarity variables. The numerical solutions of these reduced equations are attained by means of Runge–Kutta–Fehlberg fourth‐fifth‐order method by adopting a shooting scheme. An investigation of the attained outcomes reveals that the flow field is affected appreciably by the activation energy, bioconvection, and magnetic effect. Peclet and concentration difference numbers diminish the microorganism's profile. A rise in values of the Brownian motion parameter leads to an increase in the rate of heat transfer.
The present research focuses on nanoparticle suspensions and flow properties in the context of their applications. The application of these materials in biological rheological models has piqued the attention of many researchers. Magneto nanoparticles have an important function in controlling the viscoelastic physiognomies of ferrofluid flows. Having such substantial interest in the flow of ferroliquids our vision is to discuss the stagnation point flow of ferromagnetic Oldroyd-B nanofluid through a stretching sheet. The Buongiorno nanofluid model with Brownian motion and thermophoretic properties is examined. A chemical reaction effect and porous medium is also taken into account. Moreover, the modelled equations are changed to ordinary differential equations (ODEs) using suitable similarity transformations. Which are then solved using classical Runge-Kutta (RK) process with shooting technique. The solutions for the flow, thermal, concentration, skin friction, rate of heat and mass transfer features are attained numerically and presented graphically. The significant results of the current study are that, the growing values of ferromagnetic interaction parameter and porosity parameter declines the velocity profile. The rising values of chemical reaction rate parameter and Brownian motion parameter declines the mass transfer but inverse behaviour is seen for augmented values of thermophoresis parameter.
The rheology of non-Newtonian liquids has fascinated several researchers due to their wide-ranging applications in manufacturing and engineering sectors like plastic processing, the mining industry, and lubrication. Also, the features of ferromagnetic non-Newtonian fluids make it supportive for extensive usage in loudspeakers, magnetic resonance imaging, computer hard drives, directing of magnetic drugs, and magnetic hyperthermia. Owing to such potential applications, the current study is concerned with the heat and mass transfer analysis in a ferromagnetic Jeffrey liquid flow over a stretching sheet. In the flow problem, Brownian moment, magnetic dipole, and thermophoresis features are used. The active and passive
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.