The incidence rate of tuberculosis (TB) in patients with human immunodeficiency virus (HIV) infection is 26 times higher than that in other patients. Patients with both infections require long-term combination therapy, which increases therapy complexity and might lead to serious adverse reactions and drug-drug interactions. To optimize therapy for patients with HIV and TB coinfection, we developed an ultra-high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method to simultaneously quantify four antituberculosis drugs and one isoniazid (INH) metabolite. Blood samples (n ¼ 32) from 16 patients with HIV and TB coinfection were collected. Plasma protein precipitation with acetonitrile was followed by a hydrazine reaction between INH and cinnamaldehyde (CA) to produce phenylhydrazone (CA-INH) and dilution with heptafluorobutyric acid. The separation was performed on an Acquity UHPLC HSS T3 1.8 μm column (2.1 Â 100 mm, Waters) with a mobile phase consisting of 10 mmol/L ammonium formate (pH ¼ 4) in water (solvent A) and 0.1 % formic acid in methanol (solvent B) in a gradient elution. The compounds were detected using a positive multiple reaction monitoring model. INH, acetyl-INH (AC-INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA) showed good linear relationships in their quantitative ranges, with lower limits of quantification of 48, 192, 200, 96, and 480 ng/mL, respectively. The inter-and intraday precision was within 15 %, and the accuracy was between 85 % and 115 %. The mean plasma concentrations of INH, AC-INH, RIF, EMB, and PZA in patients were 1990.23 (24-16 600), 863.06 (96-2880), 3507.05 (229-9800), 808.10 (149-2130), and 18 838.33 (240-34 800) ng/mL, respectively. The plasma concentrations detected in the 16 patients were lower than the targeted concentrations in HIV-negative TB patients. In summary, we developed a simple UHPLC-MS/MS method for simultaneous quantification of first-line TB drugs, and successfully applied it for therapeutic drug monitoring in patients with HIV and TB coinfection. This method will facilitate monitoring of TB drugs in the future.