The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuron-phenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
In the title compound, C18H20N2O5, the pyrrolidine ring adopts an envelope conformation with the C atom bonded to the methyl groups as the flap. The dihydroisoxazole ring is essentially planar (r.m.s. deviation = 0.041 Å) and forms a dihedral angle of 65.19 (6)° with the phenyl ring. In the crystal, neighbouring molecules are linked into chains along [110] by intermolecular C—H⋯O hydrogen bonds and weak C—H⋯π interactions involving the phenyl ring.
Dedicated to Professor Alessandro Dondoni on the occasion of his 75 th birthday2-Isoxazolines represent a well known class of heterocycles, readily accessible in particular by 1,3-dipolar cycloaddition of nitrile oxides to alkenes. 2-Isoxazolines are easily transformed into 2-isoxazolinium salts by N-methylation, and further into 3-isoxazolines by deprotonation. In contrast to the parent system, less is known concerning the chemistry of the derived classes, and potential applications in synthesis. -2-Isoxazolinium salts, due to their iminium part, are prone to the attack of nucleophiles, and examples for this, addition of hydride (reduction) and C-nucleophiles like methylmagnesium bromide, cyanide, methane nitronate, and malonate are given. With these adducts, syntheses of β -and α-amino acids with OH-containing side chains have been effected. The cyanide products also are useful as precursors of branched, unsymmetrical 1,2-diamino polyols. -On the other hand, 3-isoxazolines due to their oxy-enamine part, represent species with nucleophilic sites and therefore react with electrophilic reagents. Examples given are [3+2] cycloadditions with nitrile oxides, [2+2] cycloadditions with dimethyl acetylenedicarboxylate, and [2+1] cycloaddition in the form of epoxidation which, however, led to a dihydro-1,3-oxazine nitrone by initial attack at the nitrogen atom, in an unprecedented oxidation/N-dealkylation/rearrangement sequence.
Multicomponent cyclocondensation of hydrazine derivatives, ethyl acetoacetate, aromatic aldehydes, and 4-hydroxycoumarin has been reported. The optimization details of the developed novel protocol are recorded. The novel procedure features short reaction time, moderate yields, and simple workup. In addition, BMIM[triflate] was chosen as a green solvent. The structures of the obtained benzylpyrazolyl coumarins were determined and confirmed by 1H NMR, 13C NMR, IR, and elemental analysis. The MIC values of benzylpyrazolyl coumarin derivatives were determined by the microbroth dilution method using 96-well plates. However, the derivatives 5a, 5b, 5d, and 5g possess the strongest activities. Compound 5b was the most active derivative against Candida albicans. Moreover, the antioxidant activity determination of these coumarins derivatives 5(a–g)–6(a–g) were studied with the DPPH and compared with gallic acid (GA)and butylated hydroxytoluene (BHT). Molecular modelling studies using DFT (density functional theory) calculations showed that there two tautomers A and B in which A is more stable than B. The benzylpyrazolyl coumarin derivatives 5e and 6f exhibited the most cytotoxic effect on the promising cytotoxic activity with IC50 values 4.45 μg/mL against MDA-MB-231 and 4.85 μg/mL against MCF7, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.