Entity matching (EM) finds data instances that refer to the same real-world entity. Most EM solutions perform blocking then matching. Many works have applied deep learning (DL) to matching, but far fewer works have applied DL to blocking. These blocking works are also limited in that they consider only a simple form of DL and some of them require labeled training data. In this paper, we develop the DeepBlocker framework that significantly advances the state of the art in applying DL to blocking for EM. We first define a large space of DL solutions for blocking, which contains solutions of varying complexity and subsumes most previous works. Next, we develop eight representative solutions in this space. These solutions do not require labeled training data and exploit recent advances in DL (e.g., sequence modeling, transformer, self supervision). We empirically determine which solutions perform best on what kind of datasets (structured, textual, or dirty). We show that the best solutions (among the above eight) outperform the best existing DL solution and the best existing non-DL solutions (including a state-of-the-art industrial non-DL solution), on dirty and textual data, and are comparable on structured data. Finally, we show that the combination of the best DL and non-DL solutions can perform even better, suggesting a new venue for research.
As data science applications proliferate, more and more lay users must perform data integration (DI) tasks, which used to be done by sophisticated CS developers. Thus, it is increasingly critical that we develop hands-off DI services, which lay users can use to perform such tasks without asking for help from developers. We propose to demonstrate such a service. Specifically, we will demonstrate CloudMatcher, a hands-off cloud/crowd service for entity matching (EM). To use CloudMatcher to match two tables, a lay user only needs to upload them to the CloudMatcher's Web page then iteratively label a set of tuple pairs as match/no-match. Alternatively, the user can enlist a crowd of workers to label the pairs. In either case, the lay user can easily perform EM end-to-end without having to involve any developers. Cloud-Matcher has been used in several domain science projects at UW-Madison and at several organizations, and is scheduled to be deployed in a large company in Summer 2018. In the demonstration we will show how easy it is for lay users to perform EM (either via interactive labeling or crowdsourcing), how users can easily create and experiment with a range of EM workflows, and how CloudMatcher can scale to many concurrent users and large datasets.
No abstract
Entity matching (EM) finds data instances that refer to the same real-world entity. In 2015, we started the Magellan project at UW-Madison, jointly with industrial partners, to build EM systems. Most current EM systems are stand-alone monoliths. In contrast, Magellan borrows ideas from the field of data science (DS), to build a new kind of EM systems, which is ecosystems of interoperable tools for multiple execution environments, such as on-premise, cloud, and mobile. This paper describes Magellan, focusing on the system aspects. We argue why EM can be viewed as a special class of DS problems and thus can benefit from system building ideas in DS. We discuss how these ideas have been adapted to build <code>PyMatcher</code> and <code>CloudMatcher</code>, sophisticated on-premise tools for power users and self-service cloud tools for lay users. These tools exploit techniques from the fields of machine learning, big data scaling, efficient user interaction, databases, and cloud systems. They have been successfully used in 13 companies and domain science groups, have been pushed into production for many customers, and are being commercialized. We discuss the lessons learned and explore applying the Magellan template to other tasks in data exploration, cleaning, and integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.