How does organizational decision-making change with the advent of artificial intelligence (AI)-based decision-making algorithms? This article identifies the idiosyncrasies of human and AI-based decision making along five key contingency factors: specificity of the decision search space, interpretability of the decision-making process and outcome, size of the alternative set, decision-making speed, and replicability. Based on a comparison of human and AI-based decision making along these dimensions, the article builds a novel framework outlining how both modes of decision making may be combined to optimally benefit the quality of organizational decision making. The framework presents three structural categories in which decisions of organizational members can be combined with AI-based decisions: full human to AI delegation; hybrid—human-to-AI and AI-to-human—sequential decision making; and aggregated human–AI decision making.
Across many fields of social science, machine learning (ML) algorithms are rapidly advancing research as tools to support traditional hypothesis testing research (e.g., through data reduction and automation of data coding or for improving matching on observable features of a phenomenon or constructing instrumental variables). In this paper, we argue that researchers are yet to recognize the value of ML techniques for theory building from data. This may be in part because of scholars’ inherent distaste for predictions without explanations that ML algorithms are known to produce. However, precisely because of this property, we argue that ML techniques can be very useful in theory construction during a key step of inductive theorizing—pattern detection. ML can facilitate algorithm supported induction, yielding conclusions about patterns in data that are likely to be robustly replicable by other analysts and in other samples from the same population. These patterns can then be used as inputs to abductive reasoning for building or developing theories that explain them. We propose that algorithm-supported induction is valuable for researchers interested in using quantitative data to both develop and test theories in a transparent and reproducible manner, and we illustrate our arguments using simulations.
The current expansion of theory and research on artificial intelligence in management and organization studies has revitalized the theory and research on decision-making in organizations. In particular, recent advances in deep learning (DL) algorithms promise benefits for decision-making within organizations, such as assisting employees with information processing, thereby augment their analytical capabilities and perhaps help their transition to more creative work. We conceptualize the decision-making process in organizations augmented with DL algorithm outcomes (such as predictions or robust patterns from unstructured data) as deep learning-augmented decision-making (DLADM). We contribute to the understanding and application of DL for decisionmaking in organizations by (a) providing an accessible tutorial on DL algorithms and (b) illustrating DLADM with two case studies drawing on image recognition and sentiment analysis tasks performed on datasets from Zalando, a European e-commerce firm, and Rotten Tomatoes, a review aggregation website for movies, respectively. Finally, promises and challenges of DLADM as well as recommendations for managers in attending to these challenges are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.