Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's ngertip. While today's MRS considerably help users to nd interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user-item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. e purpose of this trends and survey article is twofold. We rst identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the eld. e article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the eld.
This paper investigates the use of automatically extracted visual features of videos in the context of recommender systems and brings some novel contributions in the domain of video recommendations. We propose a new content-based recommender system that encompasses a technique to automatically analyze video contents and to extract a set of representative stylistic features (lighting, color, and motion) grounded on existing approaches of Applied Media Theory. The evaluation of the proposed recommendations, assessed w.r.t. relevance metrics (e.g., recall) and com
One common characteristic of research works focused on fairness evaluation (in machine learning) is that they call for some form of parity (equality) either in treatment -meaning they ignore the information about users' memberships in protected classes during training -or in impact -by enforcing proportional beneficial outcomes to users in different protected classes. In the recommender systems community, fairness has been studied with respect to both users' and items' memberships in protected classes defined by some sensitive attributes (e.g., gender or race for users, revenue in a multi-stakeholder setting for items). Again here, the concept has been commonly interpreted as some form of equality -i.e., the degree to which the system is meeting the information needs of all its users in an equal sense. In this work, we propose a probabilistic framework based on Generalized Cross Entropy (GCE) to measure fairness of a given recommendation model. The framework comes with a suite of advantages: first, it allows the system designer to define and measure fairness for both users and items and can be applied to any classification task; second, it can incorporate various notions of fairness as it does not rely on specific and pre-defined probability distributions and they can be defined at design time; finally, in its design it uses a gain factor, which can be flexibly defined to contemplate different accuracyrelated metrics to measure fairness upon decision-support metrics (e.g., precision, Hamed Zamani is currently affiliated with Microsoft.
Recommender systems have become a popular and effective means to manage the ever-increasing amount of multimedia content available today and to help users discover interesting new items. Today’s recommender systems suggest items of various media types, including audio, text, visual (images), and videos. In fact, scientific research related to the analysis of multimedia content has made possible effective content-based recommender systems capable of suggesting items based on an analysis of the features extracted from the item itself. The aim of this survey is to present a thorough review of the state-of-the-art of recommender systems that leverage multimedia content, by classifying the reviewed papers with respect to their media type, the techniques employed to extract and represent their content features, and the recommendation algorithm. Moreover, for each media type, we discuss various domains in which multimedia content plays a key role in human decision-making and is therefore considered in the recommendation process. Examples of the identified domains include fashion, tourism, food, media streaming, and e-commerce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.