Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's ngertip. While today's MRS considerably help users to nd interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user-item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. e purpose of this trends and survey article is twofold. We rst identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the eld. e article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the eld.
This paper investigates the use of automatically extracted visual features of videos in the context of recommender systems and brings some novel contributions in the domain of video recommendations. We propose a new content-based recommender system that encompasses a technique to automatically analyze video contents and to extract a set of representative stylistic features (lighting, color, and motion) grounded on existing approaches of Applied Media Theory. The evaluation of the proposed recommendations, assessed w.r.t. relevance metrics (e.g., recall) and com
Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in: In this paper we analyze viable solutions to the new user problem in collaborative filtering that are based on the exploitation of user personality information: (a) personality-based collaborative filtering, which directly improves the recommendation prediction model by incorporating user personality information; (b) personality-based active learning, which utilizes personality information for identifying additional useful preference data in the target recommendation domain to be elicited from the user; and (c) personality-based cross-domain recommendation, which exploits personality information to better use user preference data from auxiliary domains which can be used to compensate the lack of user preference data in the target domain. We benchmark the effectiveness of these methods on large datasets that span several domains, namely movies, music and books. Our results show that personality-aware methods achieve performance improvements that range from 6% to 94% for users completely new to the system, while increasing the novelty of the recommended items by 3% to 40% with respect to the non-personalized popularity baseline. We also discuss the limitations of our approach and the situations in which the proposed methods can be better applied, hence providing guidelines for researchers and practitioners in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.