Recommender Systems (RS) are widely used to help people or group of people in finding their required information amid the issue of ever-growing information overload. The existing group recommender approaches consider users to be part of a single group only, but in real life a user may be associated with multiple groups having conflicting preferences. For instance, a person may have different preferences in watching movies with friends than with family. In this paper, we address this problem by proposing a Hybrid Two-phase Group Recommender Framework (HTGF) that takes into consideration the possibility of users having simultaneous membership of multiple groups. Unlike the existing group recommender systems that use traditional methods like K-Means, Pearson correlation, and cosine similarity to form groups, we use Fuzzy C-means clustering which assigns a degree of membership to each user for each group, and then Pearson similarity is used to form groups. We demonstrate the usefulness of our proposed framework using a movies data set. The experiments were conducted on MovieLens 1M dataset where we used Neural Collaborative Filtering to recommend Top-k movies to each group. The results demonstrate that our proposed framework outperforms the traditional approaches when compared in terms of group satisfaction parameters, as well as the conventional metrics of precision, recall, and F-measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.