This paper introduces a new extension of Riemannian elastic curve matching to a general class of geometric structures, which we call (weighted) shape graphs, that allows for shape registration with partial matching constraints and topological inconsistencies. Weighted shape graphs are the union of an arbitrary number of component curves in Euclidean space with potential connectivity constraints between some of their boundary points, together with a weight function defined on each component curve. The framework of higher order invariant Sobolev metrics is particularly well suited for retrieving notions of distances and geodesics between unparametrized curves. The main difficulty in adapting this framework to the setting of shape graphs is the absence of topological consistency, which typically results in an inadequate search for an exact matching between two shape graphs. We overcome this hurdle by defining an inexact variational formulation of the matching problem between (weighted) shape graphs of any underlying topology, relying on the convenient measure representation given by varifolds to relax the exact matching constraint. We then prove the existence of minimizers to this variational problem when we have Sobolev metrics of sufficient regularity and a total variation (TV) regularization on the weight function. We propose a numerical optimization approach to solve the problem, which adapts the smooth FISTA algorithm to deal with TV norm minimization and allows us to reduce the matching problem to solving a sequence of smooth unconstrained minimization problems. We finally illustrate the capabilities of our new model through several examples showcasing its ability to tackle partially observed and topologically varying data.
This paper introduces a set of numerical methods for Riemannian shape analysis of 3D surfaces within the setting of invariant (elastic) second-order Sobolev metrics. More specifically, we address the computation of geodesics and geodesic distances between parametrized or unparametrized immersed surfaces represented as 3D meshes. Building on this, we develop tools for the statistical shape analysis of sets of surfaces, including methods for estimating Karcher means and performing tangent PCA on shape populations, and for computing parallel transport along paths of surfaces. Our proposed approach fundamentally relies on a relaxed variational formulation for the geodesic matching problem via the use of varifold fidelity terms, which enable us to enforce reparametrization independence when computing geodesics between unparametrized surfaces, while also yielding versatile algorithms that allow us to compare surfaces with varying sampling or mesh structures. Importantly, we demonstrate how our relaxed variational framework can be extended to tackle partially observed data. The different benefits of our numerical pipeline are illustrated over various examples, synthetic and real.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.