Abstract-Theoretical limits on time-of-arrival (equivalently, range) estimation are derived for multicarrier systems in the presence of interference. Specifically, closed-form expressions are obtained for Cramer-Rao bounds (CRBs) in various scenarios. In addition, based on CRB expressions, an optimal power allocation (or, spectrum shaping) strategy is proposed. This strategy considers the constraints not only from the sensed interference level but also from the regulatory emission mask. Numerical results are presented to illustrate the improvements achievable with the optimal power allocation scheme, and a maximum likelihood time-of-arrival estimation algorithm is studied to assess the effects of the proposed approach in practical estimators.Index Terms-Ranging, time-of-arrival (TOA) estimation, interference, orthogonal frequency division multiplexing (OFDM), Cramer-Rao bound (CRB), cognitive radio.
Abstract-Cognitive radio is a promising paradigm for efficient utilization of the radio spectrum due to its capability to sense environmental conditions and adapt its communication and localization features. In this paper, the theoretical limits on time-of-arrival estimation for cognitive radio localization systems are derived in the presence of interference. In addition, an optimal spectrum allocation strategy which provides the best ranging accuracy limits is proposed. The strategy accounts for the constraints from the sensed interference level as well as from the regulatory emission mask. Numerical results are presented to illustrate the improvements that can be achieved by the proposed approach.Index Terms-Ranging, time-of-arrival (TOA) estimation, cognitive radio, interference, ultra-wideband (UWB), orthogonal frequency division multiplexing (OFDM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.