One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. Sarcophyton species are considered to be a reservoir of bioactive natural metabolites. Secondary metabolites isolated from members belonging to this genus show great chemical diversity. They are rich in terpenoids, in particular, cembranoids diterpenes, tetratepenoids, triterpenoids, and ceramide, in addition to steroids, sesquiterpenes, and fatty acids. They showed a broad range of potent biological activities, such as antitumor, neuroprotective, antimicrobial, antiviral, antidiabetic, antifouling, and anti-inflammatory activity. This review presents all isolated secondary metabolites from species of genera Sacrophyton, as well as their reported biological activities covering a period of about two decades (1998–2019). It deals with 481 metabolites, including 323 diterpenes, 39 biscembranoids, 11 sesquiterpenes, 53 polyoxygenated sterols, and 55 miscellaneous and their pharmacological activities.
LC-ESI-MS/MS was used for a comprehensive characterisation of ethanol extract from the leaves of three Pistacia species. After optimisation of the method and the use of the negative ionisation mode, a total of 42 different compounds were identified, of which 22 were tentatively characterised in P. chinensis Bunge, 33 in P. khinjuk stocks and 25 in P. lentiscus L. leaves. Flavonoids, phenolic acids, and their derivatives were the most abundant identified compounds. LC-ESI-MS/MS revealed identification of 15, 18 and 6 not previously detected compounds in P. chinensis Bunge, P. khinjuk Stocks and P. lentiscus L., respectively. The three extracts were also tested for their cytotoxic activities against human PC3 prostate cancer, A549 lung cancer, MCF7 breast cancer and HepG2 liver cancer. Generally, all the extracts have a moderate cytotoxic activity against lung, breast and prostate cancer, with different IC. However, only P. lentiscus L. showed moderate activity against liver cancer.
Rhizomes of ginger are commonly used as a spice and for home remedies in either fresh or dry form. This study aimed to assess the effect of sun drying on the volatile constituents, total phenolic and flavonoid content, and the antiviral activity of ginger against low-pathogenic human coronavirus. The antiviral effect of the major volatile compounds was predicted through molecular docking. GC/MS was employed for profiling the volatile constituents of both fresh and dry ginger oils. Moreover, chemometric analysis was applied to discriminate between fresh and dry ginger and to investigate the correlation between their volatile constituents and the antiviral activity using principal component analysis (PCA) and partial least-squares regression (PLS-R). GC/MS analysis revealed that the major effects of the drying process were an increase in α-curcumene and β-sesquiphellandrene. Moreover, total phenolic and flavonoid contents of dried ginger decreased considerably. A PCA score plot revealed significant discrimination between fresh and dry ginger, with α-curcumene and 4-thujanol identified as the main discriminating markers. These findings were validated by in silico molecular docking studies, which revealed that the compounds under consideration had good drug-like characteristics. Thus, ginger is rich in valuable phytoconstituents which showed promising therapy in viral infections such as COVID-19.
Background Endophytic Aspergillus species produce countless valuable bioactive secondary metabolites. In the current study, Aspergillus flavus an endophyte from the soft coral Sarcophyton ehrenbergi was chemically explored and the extracted phytoconstituents were subsequently evaluated for antimicrobial activity. This is accomplished by employing nuclear magnetic resonance (NMR) spectroscopy and computational techniques. Additionally, An in vitro anticancer analysis of A. flavus total extract against breast cancer cells (MCF-7) was investigated. Result Six compounds were separated from the crude alcohol extract of the endophytic Aspergillus flavus out of which anhydro-mevalonolactone was reported for the first time. The anti-fungal and anti-Helicobacter pylori properties of two distinct compounds (Scopularides A and B) were assessed. Additionally, computational research was done to identify the binding mechanisms for all compounds. Both the compounds were found to be active against H. pylori with minimum inhibitory concentration (MIC) values ranging from 7.81 to 15.63 µg/ mL as compared with clarithromycin 1.95 µg/ mL. Scopularides A was potent against both Candida albicans and Aspergillus niger with MIC values ranging from 3.9 to 31.25 µg/ mL, while scopularides B only inhibits Candida albicans with MIC value of 15.63 µg/ mL and weak inhibitory activity against A. niger (MIC = 125 µg/ mL). Furthermore, cytotoxic activity showed a significant effect (IC50: 30.46 mg/mL) against MCF-7 cells. Conclusion Our findings report that cytotoxic activity and molecular docking support the antimicrobial activity of Aspergillus flavus, which could be a promising alternative source as a potential antimicrobial agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.