In this study, we present an innovative new bio-treatment approach for 17α-ethynyestradiol (EE2). Our solution for EE2 decontamination was accomplished by using the SBP (Small Bioreactor Platform) macro-encapsulation method for the encapsulation of two bacterial cultures, Rhodococcus zopfii (R. zopfii ) and Pseudomonas putida F1 (P. putida). Our results show that the encapsulated R. zopffi presented better biodegradation capabilities than P. putida F1. After 24 h of incubation on minimal medium supplemented with EE2 as a sole carbon source, EE2 biodegradation efficacy was 73.8% and 86.5% in the presence of encapsulated P. putida and R. zopfii, respectively. In the presence of additional carbon sources, EE2 biodegradation efficacy was 75% and 56.1% by R. zopfii and P. putida, respectively, indicating that the presence of other viable carbon sources might slightly reduce the EE2 biodegradation efficiency. Nevertheless, in domestic secondary effluents, EE2 biodegradation efficacy was similar to the minimal medium, indicating good adaptation of the encapsulated cultures to sanitary effluents and lack of a significant effect of the presence of other viable carbon sources on the EE2 biodegradation by the two encapsulated cultures. Our findings demonstrate that SBP-encapsulated R. zopfii and P. putida might present a practical treatment for steroidal hormones removal in wastewater treatment processes.
Olive mill wastewater (OMWW) presents a challenge to the control of effluents due to the presence of a high organic load, antimicrobial agents (monomeric-polymeric phenols, volatile acids, polyalcohols, and tannins), salinity and acidity. In this study, the production of extracellular laccase, monomeric or polymeric phenol, from an OMWW isolate based on its ability to biodegrade phenols and gallic acid as a model of phenolic compounds in OMWW was investigated. Phylogenetic analysis of the 16S RNA gene sequences identified the bacterial isolate (Acinetobacter REY) as being closest to Acinetobacter pittii. This isolate exhibited a constitutive production of extracellular laccase with an activity of 1.5 and 1.3 U ml/L when supplemented with the inducers CuSO4 and CuSO4+phenols, respectively. Batch experiments containing minimal media supplemented with phenols or gallic acid as the sole carbon and energy source were performed in order to characterize their phenolic biodegradability. Acinetobacter REY was capable of biodegrading up to 200 mg/L of phenols and gallic acid both after 10 h and 72 h, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.