The scrine protease a-thrombin (thrombin) potently stimulates G-protein-coupled signaling pathways and DNA synthesis in CCL39 hamster lung Abroblasts. To clone a thrombin receptor cDNA, selcctivc amplification of mRNA sequences displaying homology to the transmembrane domains of G-protein-coupled receptor genes was performed by polymerasc chain reaction. Using rcverae transcribed poly(A)+ RNA from CCL39 cells and degenerate primers corresponding to conserved regions of several phospholipase C-coupled receptors, three novel putative receptor sequences were identified. One corresponds to an mRNA transcript of 3.4 kb in CCL39 cells and a relatively abundant cDNA. Microinjection of RNA transcribed in vitro from this cDNA in Xenopus oocytcs leads to the expression of a functional thrombin receptor. The hamster thrornbin receptor consists of 427 amino acid residues with 8 hydrophobic domains, in&ding one at the extreme N-terminus that is likely to represent a signal peptide. A thrombin consensus cleavage site is present in the N-terminal extracellular region of the receptor squcnce followed by a negatively charged cluster of residues present in a number of proteins that interact with the anion-binding exositc of thrombin.u-Thrombin receptor; G-protein; Phospholipase C; Polymerase chain reaction; Oocyte expression; Hamster ftbroblast
We have generated a thymidine kinase gene-deleted vaccinia virus (VV) (Copenhagen strain) that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. Intratumoral inoculation of this thymidine kinase genedeleted VV encoding FCU1 (VV-FCU1) in the presence of systemically administered prodrug 5-fluorocytosine (5-FC) produced statistically significant reductions in the growth of subcutaneous human colon cancer in nude mice compared with thymidine kinase gene-deleted VV treatments or with control 5-fluorouracil alone. A limitation of prodrug therapies has often been the requirement for the direct injection of the virus into relatively large, accessible tumors. Here we demonstrate vector targeting of tumors growing subcutaneously following systemic administration of VV-FCU1. More importantly we also demonstrate that the systemic injection of VV-FCU1 in nude mice bearing orthotopic liver metastasis of a human colon cancer, with concomitant administration of 5-FC, leads to substantial tumor growth retardation. In conclusion, the insertion of the fusion FCU1 suicide gene potentiates the oncolytic efficiency of the thymidine kinase gene-deleted VV and represents a potentially efficient means for gene therapy of distant metastasis from colon and other cancers.
Targeting of adenovirus (Ad)-encoded therapeutic genes to specific cell types has become a major goal in gene therapy. Redirecting the specificity of infection requires the abrogation of the natural interaction between the viral fiber and its cellular receptors (CAR) and the simultaneous introduction of a new binding specificity into the viral capsid. To abrogate the natural affinity of the fiber, we have mutated residues presumed to be directly or indirectly involved in CARbinding in the knob domain of the fiber protein. These residues are located in the AB loop (Ser408) and in the DG loop (Tyr491, Ala494, Ala503). The mutations Ser408Glu,
ObjectiveTo assess a new adenovirus-based immunotherapy as a novel treatment approach to chronic hepatitis B (CHB).MethodsTG1050 is a non-replicative adenovirus serotype 5 encoding a unique large fusion protein composed of a truncated HBV Core, a modified HBV Polymerase and two HBV Envelope domains. We used a recently described HBV-persistent mouse model based on a recombinant adenovirus-associated virus encoding an over length genome of HBV that induces the chronic production of HBsAg, HBeAg and infectious HBV particles to assess the ability of TG1050 to induce functional T cells in face of a chronic status.ResultsIn in vitro studies, TG1050 was shown to express the expected large polyprotein together with a dominant, smaller by-product. Following a single administration in mice, TG1050 induced robust, multispecific and long-lasting HBV-specific T cells detectable up to 1 year post-injection. These cells target all three encoded immunogens and display bifunctionality (ie, capacity to produce both interferon γ and tumour necrosis factor α as well as cytolytic functions). In addition, control of circulating levels of HBV DNA and HBsAg was observed while alanine aminotransferase levels remain in the normal range.ConclusionsInjection of TG1050 induced both splenic and intrahepatic functional T cells producing cytokines and displaying cytolytic activity in HBV-naïve and HBV-persistent mouse models together with significant reduction of circulating viral parameters. These results warrant clinical evaluation of TG1050 in the treatment of CHB.
Major disadvantages of human adenovirus (hAd) vectors in gene therapy include preexisting or induced immune responses, and possible coreplication of recombinant hAd in the presence of wild-type hAds. These disadvantages may be overcome by using nonhuman, animal adenoviruses (aAds). We evaluated four different aAds for their potential use as viral vectors. The canine adenovirus type 2 (CAV2) and bovine adenovirus type 3 (BAV3) appeared to be suitable systems, as they infect human cells. CAV2, but not BAV3, caused cytotoxicity, and only limited (CAV2) or no (BAV3) production of infectious virus particles was observed after infection of human cell lines. CAV2 showed higher expression of endogenous genes than did BAV3 in the tested human cells. No interference between hAd and CAV2 or BAV3, such as recombination of DNA or cross-activation of virus replication, was observed in up to five passages in double-infected human cells. Transfection of cloned genomic CAV2 or BAV3 DNA into appropriate permissive cell lines rescued infectious virus. Furthermore, we produced a recombinant E1-deleted BAV3, and showed that it could infect and express a reporter gene in various human cell types. The goal was to construct and evaluate recombinant (E1-deleted) animal adenoviruses (aAds) as new vector systems for human gene therapy. The rationale for developing aAds for human use is the potential higher safety and efficiency, as compared with human adenoviruses (hAds). Coreplication and recombination with preexisting hAds should not be possible owing to lack of homology, and preexisting immunity in the general population should be limited. Of the four aAds we evaluated, BAV3 appeared to be the best candidate. It infects human cells without showing growth or cytotoxic effects, viral gene expression was barely detectable, and no trans-activation of either virus was detected in coinfections with hAd5. Rescue of virus in permissive cells, from plasmids containing the CAV2 or BAV3 genome, confirmed our approach. Furthermore, an E1-deleted recombinant BAV3 was constructed and shown to transduce and express the lacZ reporter gene in human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.