Functional involvement of the Notch pathway in osteoblastic differentiation has been previously investigated using the truncated intracellular domain, which mimics Notch signaling by interacting with the DNAbinding protein CBF-1. However, it is unclear whether Notch ligands Delta1 and Jagged1 also induce an identical cellular response in osteoblastic differentiation. We have shown that both Delta1 and Jagged1 were expressed concomitantly with Notch1 in maturating osteoblastic cells during bone regeneration and that overexpressed and immobilized recombinant Delta1 and Jagged1 alone did not alter the differentiated state of MC3T3-E1 and C2C12 cells. However, they augmented bone morphogenetic protein-2 (BMP2)-induced alkaline phosphatase activity and the expression of several differentiation markers, except for osteocalcin, and ultimately enhanced calcified nodule and in vivo ectopic bone formation of MC3T3-E1. In addition, both ligands transmitted signal through the CBF-1-dependent pathway and stimulated the expression of HES-1, a direct target of Notch pathway. To test the necessity of Notch signaling in BMP2-induced differentiation, Notch signaling was inhibited by the dominant negative extracellular domain of Notch1, specific inhibitor, or small interference RNA. These treatments decreased alkaline phosphatase activity as well as the expression of other differentiation markers and inhibited the promoter activity of Id-1, a target gene of the BMP pathway. These results indicate the functional redundancy between Delta1 and Jagged1 in osteoblastic differentiation whereby Delta1/Jagged1-activated Notch1 enhances BMP2-induced differentiation through the identical signaling pathway. Furthermore, our data also suggest that functional Notch signaling is essential not only for BMP2-induced osteoblast differentiation but also for BMP signaling itself.
Orthodontic tooth movement is achieved by mechanical loading; however, the biological mechanism involved in this process is not clearly understood owing to the lack of a suitable experimental model. In the present study, we established an orthodontic tooth movement model in mice using a Ni-Ti closed coil spring that was inserted between the upper incisors and the upper first molar. Histological examination demonstrated that the orthodontic force moved the first upper molar mesially without necrosis of the periodontium during tooth movement. The number of TRAP-positive osteoclasts on the pressure side significantly increased in a time-dependent manner. Quantitative real time-based reverse transcription-polymerase chain reaction analysis demonstrated increased levels of mRNA for cathepsin K. Immunohistochemical staining revealed the expression of tumor necrosis factor-alpha (TNFalpha) in periodontium on the pressure side of the first molar during orthodontic tooth movement. When this tooth movement system was applied to TNF type 1 receptor-deficient mice and TNF type 2 receptor-deficient mice, tooth movement observed in TNF type 2 receptor-deficient mice was smaller than that in the wild-type mice and TNF type 1 receptor-deficient mice. The number of TRAP-positive osteoclasts on the pressure side was significantly small in TNF type 2 receptor-deficient mice compared with that in TNF type 1 receptor-deficient mice on day 6 after application of the appliance. The present study indicates that TNFalpha signaling plays some important roles in orthodontic tooth movement.
To investigate the molecular mechanism underlying the differentiation of osteoblasts and chondroblasts, we established a clonal cell lines, RD-C6, from Runx2-deficient mouse embryos. RD-C6 cells expressed almost undetectable levels of phenotypes related to osteoblast and chondroblast differentiation at basal culture condition, whereas treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2) or transduction of BMP-2 by adenovirus effectively induced this cell line to express mRNA related to the differentiation of osteoblasts and chondroblasts including alkaline phosphatase, osteocalcin, and osterix. Transduction of Runx2 also induced the expression of these mRNA in RD-C6 cells. BMP-2 transduction increased expression levels of mRNA for Msx2 and Dlx5, but Runx2 transduction induced no significant increases in expression levels of these mRNA. Microarray analysis using RD-C6 cells with or without rhBMP-2 treatment demonstrated that BMP-2 upregulated 66 genes including 13 transcription-related molecules such as Id1, Id2, Id4, Hey1, Smad6, Smad7, and Msx2. To confirm bone and cartilage formation ability of RD-C6 cells, we transplanted RD-C6 cells into the peritoneal cavity of athymic mice using diffusion chambers with rhBMP-2. RD-C6 cells generated unmineralized cartilage but not bone. These results indicate that BMP-2 induces Runx2-deficient cells to express markers related to osteoblast and chondroblast differentiation using a Runx2-independent pathway, but it failed to induce these cells to differentiate into bone-forming osteoblasts and mature chondrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.