Treatment with 6 mg/d capsinoids orally appeared to be safe and was associated with abdominal fat loss. Capsinoid ingestion was associated with an increase in fat oxidation that was nearly significant. We identified 2 common genetic variants that may be predictors of therapeutic response.
Correlation-based network analysis may help to uncover specific physiologic conditions or states. A novel approach using amino acid molar ratios was shown to generate indexes that can be used to separate animal disease models and monitor the progression of a disease parameter. Some of the methods described here may be applicable to the clinical setting.
The effects of defatted safflower seed extract and its phenolic constituents, serotonin derivatives, on atherosclerosis were studied. Ethanol-ethyl acetate extract of safflower seeds (SSE) inhibited low-density lipoprotein (LDL) oxidation induced in vitro by an azo-containing free-radical initiator V70 or copper ions. Two serotonin derivatives [N-(p-coumaroyl)serotonin, CS; N-feruloylserotonin, FS] and their glucosides were identified as the major phenolic constituents of the extract. The study with chemically synthesized materials revealed that a majority of the antioxidative activity of SSE was attributable to the aglycones of these two serotonin derivatives. Orally administered CS and FS suppressed CuSO(4)-induced plasma oxidation ex vivo. Long-term (15 week) dietary supplementation of SSE (1.0 wt %/wt) and synthetic serotonin derivatives (0.2-0.4%) significantly reduced the atherosclerotic lesion area in the aortic sinus of apolipoprotein E-deficient mice (29.2-79.7% reduction). The plasma level of both lipid peroxides and anti-oxidized LDL autoantibody titers decreased concomitantly with the reduction of lesion formation. Serotonin derivatives were detected as both intact and conjugated metabolites in the plasma of C57BL/6J mice fed on 1.0% SSE diet. These findings demonstrate that serotonin derivatives of SSE are absorbed into circulation and attenuate atherosclerotic lesion development possibly because of the inhibition of oxidized LDL formation through their strong antioxidative activity.
Chronic excess of GH is known to cause hyperinsulinemia and insulin resistance. We developed human GH transgenic (TG) rats, which were characterized by high plasma levels of human GH and IGF-I. These TG rats showed higher levels of plasma insulin, compared with control littermates, whereas plasma glucose concentrations were normal. Insulin-dependent glucose uptake into adipocytes and muscle was impaired, suggesting that these rats developed insulin resistance. In contrast, insulin-independent glucose uptake into hepatocytes from TG rats was significantly increased, and glycogen and lipid levels in livers of TG rats were remarkably high. Because the role of liver in GH-induced insulin resistance is poorly understood, we studied insulin signaling at early stages and insulin action in liver and primary cultures of hepatocytes prepared from TG rats. There was no difference in insulin receptor kinase activity induced by insulin between TG and control rats; however, insulin-dependent insulin receptor substrate-2 tyrosine phosphorylation, glycogen synthase activation, and expression of enzymes that induce lipid synthesis were potentiated in hepatocytes of TG rats. These results suggest that impairment of insulin-dependent glucose uptake by GH excess in adipose tissue and muscle is compensated by up-regulation of glucose uptake in liver and that potentiation of insulin signaling through insulin receptor substrate-2 in liver experiencing GH excess causes an increase in glycogen and lipid synthesis from incorporated glucose, resulting in accumulation of glycogen and lipids in liver. This novel mechanism explains normalization of plasma glucose levels at least in part in a GH excess model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.