Transition metal-catalyzed amination of allylic compounds via a pi-allylmetal intermediate is a powerful and useful method for synthesizing allylamines. Direct catalytic substitution of allylic alcohols, which forms water as the sole coproduct, has recently attracted attention for its environmental and economical advantages. Here, we describe the development of a versatile direct catalytic amination of both aryl- and alkyl-substituted allylic alcohols with various amines using Pt-Xantphos and Pt-DPEphos catalyst systems, which allows for the selective synthesis of various monoallylamines, such as the biologically active compounds Naftifine and Flunarizine, in good to high yield without need for an activator. The choice of the ligand was crucial toward achieving high catalytic activity, and we demonstrated that not only the large bite-angle but also the linker oxygen atom of the Xantphos and DPEphos ligands was highly important. In addition, microwave heating dramatically affected the catalyst activity and considerably decreased the reaction time compared with conventional heating. Furthermore, several mechanistic investigations, including (1)H and (31)P{(1)H} NMR studies; isolation and characterization of several catalytic intermediates, Pt(xantphos)Cl(2), Pt(eta(2)-C(3)H(5)OH)(xantphos), etc; confirmation of the structure of [Pt(eta(3)-allyl)(xantphos)]OTf by X-ray crystallographic analysis; and crossover experiments, suggested that formation of the pi-allylplatinum complex through the elimination of water is an irreversible rate-determining step and that the other processes in the catalytic cycle are reversible, even at room temperature.
Direct amination of allylic alcohols with primary and secondary amines catalyzed by a system made of [Ni(1,5-cyclooctadiene)2 ] and 1,1'-bis(diphenylphosphino)ferrocene was effectively enhanced by adding nBu4 NOAc and molecular sieves, affording the corresponding allyl amines in high yield with high monoallylation selectivity for primary amines and high regioselectivity for monosubstituted allylic alcohols. Such remarkable additive effects of nBu4 NOAc were elucidated by isolating and characterizing some nickel complexes, manifesting the key role of a charge neutral pentacoordinated η(3) -allyl acetate complex in the present system, in contrast to usual cationic tetracoordinated complexes earlier reported in allylic substitution reactions.
Direct amination of unactivated allylic alcohols with aqueous ammonia was catalyzed by a Pt/phosphine complex to give the corresponding allylamines along with water as the sole by‐product. Under optimized reaction conditions, primary allylamines were obtained as major products with excellent monoallylation selectivity. cod=1,5‐cyclooctadiene.
Direct aminations of allylic alcohols, benzylic alcohols, and benzhydrols with electron-withdrawing (F, Br, I, NO 2 , or CN) substituents were efficiently catalyzed by aluminum triflate [AlA C H T U N G T R E N N U N G (OTf) 3 ] to afford the corresponding biarylamines in high yield, and the dibromo-substituted product was further transformed into letrozole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.