SummaryMany plants contain latex that exudes when leaves are damaged, and a number of proteins and enzymes have been found in it. The roles of those latex proteins and enzymes are as yet poorly understood. We found that papain, a cysteine protease in latex of the Papaya tree (Carica papaya, Caricaceae), is a crucial factor in the defense of the papaya tree against lepidopteran larvae such as oligophagous Samia ricini (Saturniidae) and two notorious polyphagous pests, Mamestra brassicae (Noctuidae) and Spodoptera litura (Noctuidae). Leaves of a number of laticiferous plants, including papaya and a wild ®g, Ficus virgata (Moraceae), showed strong toxicity and growth inhibition against lepidopteran larvae, though no apparent toxic factors from these species have been reported. When the latex was washed off, the leaves of these lactiferous plants lost toxicity. Latexes of both papaya and the wild ®g were rich in cysteine-protease activity. E-64, a cysteine protease-speci®c inhibitor, completely deprived the leaves of toxicity when painted on the surface of papaya and ®g leaves. Cysteine proteases, such as papain, ®cin, and bromelain, all showed toxicity. The results suggest that plant latex and the proteins in it, cysteine proteases in particular, provide plants with a general defense mechanism against herbivorous insects.
Since ancient times, mulberry leaves (Morus spp.) have been used to rear the silkworm Bombyx mori. Because the silkworm grows well on mulberry leaves, the toxicities and defensive activities of these leaves against herbivorous insects have been overlooked. Here we show that mulberry leaves are highly toxic to caterpillars other than the silkworm B. mori, because of the ingredients of the latex, a milky sap exuded from mulberry leaf veins. The toxicity of mulberry leaves was lost when the latex was eliminated from the leaves, and artificial diets containing latex showed toxicity. Mulberry latex contained very high concentrations of alkaloidal sugar-mimic glycosidase inhibitors reported to have antidiabetic activities, such as 1,4-dideoxy-1,4-imino-D-arabinitol, 1-deoxynojirimycin, and 1,4-dideoxy-1,4-imino-D-ribitol. The overall concentrations of these inhibitors in latex reached 1.5-2.5% (8 -18% dry weight) in several mulberry varieties, which were Ϸ100 times the concentrations previously reported from whole mulberry leaves. These sugar-mimic alkaloids were toxic to caterpillars but not to the silkworm B. mori, indicating that the silkworm can circumvent the mulberry tree's defense. Our results suggest that latex ingredients play key roles in defense of this tree and of other plants against insect herbivory, and they imply that plant latexes are treasuries of bioactive substances useful as medicines and pesticides.plant defense ͉ plant-insect interactions ͉ Morus spp. ͉ Eri silkworm ͉ Bombyx mori
The brown planthopper (BPH) is the most serious insect pest of rice in Asia. The indica rice cultivar ADR52 carries two BPH resistance genes, BPH26 (BROWN PLANTHOPPER RESISTANCE 26) and BPH25. Map-based cloning of BPH26 revealed that BPH26 encodes a coiled-coil-nucleotide-binding-site–leucine-rich repeat (CC–NBS–LRR) protein. BPH26 mediated sucking inhibition in the phloem sieve element. BPH26 was identical to BPH2 on the basis of DNA sequence analysis and feeding ability of the BPH2-virulent biotype of BPH. BPH2 was widely incorporated in elite rice cultivars and was well-cultivated in many Asian countries as a favorable gene resource in rice breeding against BPH. However, BPH2 was rendered ineffective by a virulent biotype of BPH in rice fields in Asia. In this study, we suggest that BPH2 can be reused by combining with other BPH resistance genes, such as BPH25, to ensure durable resistance to BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.