Recent clinical studies suggest that several antihypertensive drugs, especially angiotensin-converting enzyme inhibitors, reduced bone fractures. To clarify the relationship between hypertension and osteoporosis, we focused on the role of angiotensin II (Ang II) on bone metabolism. In bone marrow-derived mononuclear cells, Ang II (1x10(-6) M) significantly increased tartrate-resistant acid phosphatase (TRAP) -positive multinuclear osteoclasts. Of importance, Ang II significantly induced the expression of receptor activator of NF-kappaB ligand (RANKL) in osteoblasts, leading to the activation of osteoclasts, whereas these effects were completely blocked by an Ang II type 1 receptor blockade (olmesartan) and mitogen-activated protein kinase kinase inhibitors. In a rat ovariectomy model of estrogen deficiency, administration of Ang II (200 ng/kg/min) accelerated the increase in TRAP activity, accompanied by a significant decrease in bone density and an increase in urinary deoxypyridinoline. In hypertensive rats, treatment with olmesartan attenuated the ovariectomy-induced decrease in bone density and increase in TRAP activity and urinary deoxypyridinoline. Furthermore, in wild-type mice ovariectomy with five-sixths nephrectomy decreased bone volume by microcomputed tomography, whereas these change was not detect in Ang II type 1a receptor-deficient mice. Overall, Ang II accelerates osteoporosis by activating osteoclasts via RANKL induction. Blockade of Ang II might become a novel therapeutic approach to prevent osteoporosis in hypertensive patients.
BackgroundOsteoarthritis (OA) is one of the most common joint diseases in elderly people, however, the underlying mechanism of OA pathogenesis is not completely clear. Periostin, the extracellular protein, has been shown by cDNA array analysis to be highly expressed in OA, but its function is not fully understood. The purpose of this study was to examine the expression and function of periostin in human OA.MethodsHuman cartilage and synovia samples were used for the analysis of periostin expression and function. The human cartilage samples were obtained from the knees of patients undergoing total knee arthroplasty as OA samples and from the femoral bone head of patients with femoral neck fracture as control samples. Quantitative RT-PCR, ELISA, and immunohistochemistry were used for analysis of periostin expression in cartilage and synovia. Human primary chondrocytes isolated from control cartilage were stimulated by periostin, and the alteration of OA related gene expression was examined using quantitative RT-PCR. Immunocytochemistry of p65 was performed for the analysis of nuclear factor kappa B (NFκB) activation.ResultsThe periostin mRNA was significantly higher in OA cartilage than in control cartilage. Immunohistochemical analysis of periostin showed that the main positive signal was localized in chondrocytes and their periphery matrix near the erosive area, with less immunoreactivity in deeper zones. There was positive correlation between Mankin score and periostin immunoreactivity. The periostin expression was also detected in the fibrotic cartilage and tissue of subchondral bone. In cultured human chondrocytes, periostin induced the expression of interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and nitric oxide synthase-2 (NOS2) in a dose- and time-dependent manner. The activation of NFκB signaling was recognized by the nuclear translocation of p65. Periostin-induced upregulation of these genes was suppressed by NFκB inactivation in chondrocytes.ConclusionPeriostin was upregulated in OA cartilage, and it may amplify inflammatory events and accelerate OA pathology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12891-015-0682-3) contains supplementary material, which is available to authorized users.
Overall, an ultrasound-mediated gene transfer method with Optison enhanced the efficiency of gene transfer and expression in the rat kidney. This novel non-viral method may be useful for gene therapy for renal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.