Autologous scaffold-free TEC derived from synovial MSCs may be used for regenerative cartilage repair via a sutureless and simple implantation procedure. Registration: 000008266 (UMIN Clinical Trials Registry number).
BackgroundOsteoarthritis (OA) is one of the most common joint diseases in elderly people, however, the underlying mechanism of OA pathogenesis is not completely clear. Periostin, the extracellular protein, has been shown by cDNA array analysis to be highly expressed in OA, but its function is not fully understood. The purpose of this study was to examine the expression and function of periostin in human OA.MethodsHuman cartilage and synovia samples were used for the analysis of periostin expression and function. The human cartilage samples were obtained from the knees of patients undergoing total knee arthroplasty as OA samples and from the femoral bone head of patients with femoral neck fracture as control samples. Quantitative RT-PCR, ELISA, and immunohistochemistry were used for analysis of periostin expression in cartilage and synovia. Human primary chondrocytes isolated from control cartilage were stimulated by periostin, and the alteration of OA related gene expression was examined using quantitative RT-PCR. Immunocytochemistry of p65 was performed for the analysis of nuclear factor kappa B (NFκB) activation.ResultsThe periostin mRNA was significantly higher in OA cartilage than in control cartilage. Immunohistochemical analysis of periostin showed that the main positive signal was localized in chondrocytes and their periphery matrix near the erosive area, with less immunoreactivity in deeper zones. There was positive correlation between Mankin score and periostin immunoreactivity. The periostin expression was also detected in the fibrotic cartilage and tissue of subchondral bone. In cultured human chondrocytes, periostin induced the expression of interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and nitric oxide synthase-2 (NOS2) in a dose- and time-dependent manner. The activation of NFκB signaling was recognized by the nuclear translocation of p65. Periostin-induced upregulation of these genes was suppressed by NFκB inactivation in chondrocytes.ConclusionPeriostin was upregulated in OA cartilage, and it may amplify inflammatory events and accelerate OA pathology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12891-015-0682-3) contains supplementary material, which is available to authorized users.
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.