Abstract:The extremely low friction and minimal wear in natural synovial joints appear to be established by effective lubrication mechanisms based on appropriate combination of articular cartilage and synovial fluid. The complex structure of cartilage composed of collagen and proteoglycan with high water content contributes to high load-carrying capacity as biphasic materials and the various constituents of synovial fluid play important roles in various lubrication mechanisms. However, the detailed differences in functions of the intact and damaged cartilage tissues, and the interaction or synergistic action of synovia constituents with articular cartilage have not yet been clarified. In this study, to examine the roles of synovia constituents and the importance of cartilage surface conditions, the changes in friction were observed in the reciprocating tests of intact and damaged articular cartilage specimens against glass plate lubricated with lubricants containing phospholipid, protein and/or hyaluronic acid as main constituents in synovial fluid. The effectiveness of lubricant constituents and the influence of cartilage surface conditions on friction are discussed. In addition, the protectiveness by synovia constituents for intact articular cartilage surfaces is evaluated.
In healthy natural synovial joints, the extremely low friction and minimum wear are maintained by their superior load-carrying capacity and lubricating ability. This superior lubricating performance appears to be actualized not by single lubrication mode but by synergistic combination of multimode mechanisms such as fluid film, biphasic, hydration, gel film and/or boundary lubrication. On the contrary, in most artificial joints composed of ultra-high molecular weight polyethylene against metal or ceramic-mating material, boundary and/or mixed lubrication modes prevail and thus local direct contact brings down high friction and high-wear problems. To extend the durability of artificial joint, the reduction in friction and wear by improvement in lubrication mechanism is required as an effective design solution. In this paper, at the start, the mechanism of superior lubricity for articular cartilage is examined from the viewpoints of biphasic and boundary lubrication mechanism. Subsequently, the proposal of biomimetic artificial hydrogel cartilage is put forward to improve the lubricating modes in artificial joints. The tribological behaviours in two kinds of poly(vinyl alcohol) hydrogels are compared with that of natural cartilage. The importance in lubrication mechanism in artificial hydrogel cartilage is discussed.
With various daily activities, the effectiveness of adsorbed film formed on a gel-like layer at the uppermost superficial articular cartilage in natural synovial joints becomes important to control the friction and wear of articular cartilage in mixed or boundary lubrication regime as an adaptive multimode lubrication mechanism. Furthermore, in the case where the adsorbed film has been removed, the proteoglycan gel layer is expected to preserve low friction and protect against the wear of bulk cartilage tissue with an effective hydration lubrication mechanism. Besides, it is indicated that the biphasic lubrication plays an important role in lowering of friction in articular cartilage containing a large amount of water. At the present stage, however, the detailed relationship between adsorbed films and hydrated gel layers has not yet been elucidated. In this article, the frictional behaviours of articular cartilage on a glass plate were observed in the reciprocating tests with the restarting process after interruption and unloading. The lubricating effectiveness of adsorbed films in hyaluronate (HA) solutions was examined using intact and partially damaged cartilage specimens. The role of albumin and g-globulin in relation to the surface conditions of gel layer is discussed. The restarting friction immediately after reloading became lower as a result of recovery of the effective interstitial fluid pressurization and hydration and adsorbed films have a significant effect on the frictional behaviour at local contacts. To clarify the molecular phenomena taking place under rubbing condition, in situ observations of the forming adsorbed film were conducted. The measurements were performed using the fluorescent staining method for protein and HA molecules at low contact pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.