Liquid electrode plasma atomic emission spectrometry (LEP-AES) is a recently developed elemental analysis method that uses microplasma. LEP forms in a vapor bubble generated inside a narrow-center microchannel by using high-voltage DC pulse power. We studied the characteristics of LEP and atomic emission of lead (Pb), as an example element, which has not been described in detail. We estimated the plasma parameters and observed the expansion and shrinkage of a vapor bubble with discharge as well as the time course and spatial distribution of the atomic emission of Pb (405.78 nm). The applied voltage was 2.5 kV and the pulse width was less than 3 ms, which produced a current of about 100 mA. We found that the excitation temperature was about 8000 K and the electron density was about 1 Â 10 15 cm À3 . We also found that two quite different emission phases occurred separately during the time course. The first emission phase corresponds to the first expansion and shrinking of the bubble around atmospheric pressure and the second emission phase corresponds to the re-expansion of the bubble and emission at reduced pressure with higher atomic and lower background emissions. Maximum atomic and background emissions were observed at the narrowed center of the microchannel, but there was an additional local maximum atomic emission region at the anode side bubble-liquid interface where the background emission was very low, which would be a better condition for sensitive measurement. The limit of detection determined in our experiment was 4.0 mg L À1 for Pb.
We report a new hybrid mass spectrometer, which is a combination of a quadrupole ion trap and an orthogonal time-of-flight (TOF) mass spectrometer. This new configuration consists of a collisional-damping chamber (CDC) inserted between an MSn-capable ion trap and a high-mass-accuracy orthogonal-TOF mass spectrometer. Because the CDC converted an ion packet into an energy-focused and quasi-continuous beam, a high mass resolution of over 10,000 and a high mass accuracy of better than 3 ppm were achieved. Moreover, the ratio of the maximum detectable m/z to the minimum detectable m/z, which is referred to here as the mass window, was improved to more than 10.
Liquid electrode plasma atomic emission spectrometry (LEP-AES) is a new elemental analysis method that uses microplasma. LEP forms in a vapor bubble generated inside a narrow-center microchannel by using high-voltage DC pulse power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.