This paper discusses dynamic manipulation inspired by the handling mechanism of a pizza chef. The chef handles a tool called "pizza peel," where a plate is attached at the tip of a bar, and he remotely manipulates a pizza on the plate. We found that he aggressively utilizes only two degrees of freedom (DOFs) from the remote handling location during manipulation: translation along the bar and rotation about the bar. From the viewpoint of a dynamic system, the inertial loads for these specific DOFs are never affected by the length of the bar. This is important for the production of quick plate motions so that the object on the plate can be dynamically and remotely manipulated. Applying this handling mechanism to a robot system, we first reveal how to make the object's motion for three DOFs by using two DOFs of plate motion. We then show that it is guaranteed to achieve an arbitrary desired set of position and orientation of the object by the proposed manipulation scheme. The proposed method has good manipulability because the translational motion of the object can be fully decoupled from the rotational motion (though not vice versa). Finally, we show a couple of experiments that confirm the basic idea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.