Existing unsupervised domain adaptation (UDA) studies focus on transferring knowledge in an offline manner. However, many tasks involve online requirements, especially in real-time systems. In this paper, we discuss Online UDA (OUDA) which assumes that the target samples are arriving sequentially as a small batch. OUDA tasks are challenging for prior UDA methods since online training suffers from catastrophic forgetting which leads to poor generalization. Intuitively, a good memory is a crucial factor in the success of OUDA. We formalize this intuition theoretically with a generalization bound where the OUDA target error can be bounded by the source error, the domain discrepancy distance, and a novel metric on forgetting in continuous online learning. Our theory illustrates the tradeoffs inherent in learning and remembering representations for OUDA. To minimize the proposed forgetting metric, we propose a novel source feature distillation (SFD) method which utilizes the source-only model as a teacher to guide the online training. In the experiment, we modify three UDA algorithms, i.e., DANN, CDAN, and MCC, and evaluate their performance on OUDA tasks with real-world datasets. By applying SFD, the performance of all baselines is significantly improved.
Online self-supervised learning methods are attractive candidates for automatic object picking. Self-supervised learning collects training data online during the learning process. However, the trial samples lack the complete ground truth because the observable parts of the agent are limited. That is, the information contained in the trial samples is often insufficient to learn the specific grasping position of each object. Consequently, the training falls into a local solution, and the grasp positions learned by the robot are independent of the state of the object. In this study, the optimal grasping position of an individual object is determined from the grasping score, defined as the distance in the feature space obtained using metric learning. The closeness of the solution to the pre-designed optimal grasping position was evaluated in trials. The proposed method incorporates two types of feedback control: one feedback enlarges the grasping score when the grasping position approaches the optimum; the other reduces the negative feedback of the potential grasping positions among the grasping candidates. The proposed online self-supervised learning method employs two deep neural networks. : a single shot multibox detector (SSD) that detects the grasping position of an object, and Siamese networks (SNs) that evaluate the trial sample using the similarity of two input data in the feature space. Our method embeds the relation of each grasping position as feature vectors by training the trial samples and a few pre-samples indicating the optimum grasping position. By incorporating the grasping score based on the feature space of SNs into the SSD training process, the method preferentially trains the optimum grasping position. In the experiment, the proposed method achieved a higher success rate than the baseline method using simple teaching signals. And the grasping scores in the feature space of the SNs accurately represented the grasping positions of the objects.
It is a big problem that a model of deep learning for a picking robot needs many labeled images. Operating costs of retraining a model becomes very expensive because the object shape of a product or a part often is changed in a factory. It is important to reduce the amount of labeled images required to train a model for a picking robot. In this study, we propose a multi-task learning framework for few-shot classification using feature vectors from an intermediate layer of a model that detects grasping positions. In the field of manufacturing, multitask for shape classification and grasping-position detection is often required for picking robots. Prior multi-task learning studies include methods to learn one task with feature vectors from a deep neural network (DNN) learned for another task. However, the DNN that was used to detect grasping positions has two problems with respect to extracting feature vectors from a layer for shape classification: (1) Because each layer of the grasping position detection DNN is activated by all objects in the input image, it is necessary to refine the features for each grasping position. (2) It is necessary to select a layer to extract the features suitable for shape classification. To tackle these issues, we propose a method to refine the features for each grasping position and to select features from the optimal layer of the DNN. We then evaluated the shape classification accuracy using these features from the grasping positions. Our results confirm that our proposed framework can classify object shapes even when the input image includes multiple objects and the number of images available for training is small.
Domain shift is regarded as a key factor affecting the robustness of many models. Recently, unsupervised auxiliary learning (e.g., input reconstruction) has been proposed to improve the model's domain transferability and alleviate cross-domain performance degradation; however, in the paradigm of existing approaches, the features extracted from various tasks are shared, which mixes the domain-invariant features from the main task and domain-specific feature from the auxiliary task, leading to an imperfect learning. To solve this problem, we propose a novel unsupervised domain adaptation method -the Disentangled Reconstruction Neural Network (DRNN) -for cross-domain retina vessel segmentation. DRNN leverages two tandem nets and disentangles the domain-invariant features and the domain-specific features in the multi-task learning process. We perform extensive experiments on public retina datasets and our proposed DRNN outperforms the competitors by a significant margin to achieve state-of-the-art results pertaining to retina vessel segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.