Nuclear receptors regulate gene expression by direct activation of target genes and inhibition of AP-1. Here we report that, unexpectedly, activation by nuclear receptors requires the actions of CREB-binding protein (CBP) and that inhibition of AP-1 activity is the apparent result of competition for limiting amounts of CBP/p300 in cells. Utilizing distinct domains, CBP directly interacts with the ligand-binding domain of multiple nuclear receptors and with the p160 nuclear receptor coactivators, which upon cloning have proven to be variants of the SRC-1 protein. Because CBP represents a common factor, required in addition to distinct coactivators for function of nuclear receptors, CREB, and AP-1, we suggest that CBP/p300 serves as an integrator of multiple signal transduction pathways within the nucleus.
The functionally conserved proteins CBP and p300 act in conjunction with other factors to activate transcription of DNA. A new factor, p/CIP, has been discovered that is present in the cell as a complex with CBP and is required for transcriptional activity of nuclear receptors and other CBP/p300-dependent transcription factors. The highly related nuclear-receptor co-activator protein NCoA-1 is also specifically required for ligand-dependent activation of genes by nuclear receptors. p/CIP, NCoA-1 and CBP all contain related leucine-rich charged helical interaction motifs that are required for receptor-specific mechanisms of gene activation, and allow the selective inhibition of distinct signal-transduction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.