The abnormal immune response accompanying IgG4-related autoimmune pancreatitis (AIP) is presently unclear. In this study, we examined the role of plasmacytoid dendritic cell (pDC) activation and IFN-α production in this disease as well as in a murine model of AIP (MRL/Mp mice treated with polyinosinic-polycytidylic acid). We found that the development of AIP in treated MRL/Mp mice occurred in parallel with pancreatic accumulation of pDCs producing IFN-α, and with pDC depletion and IFN-α-blocking studies, we showed that such accumulation was necessary for AIP induction. In addition, we found that the pancreas of treated MRL/Mp mice contained neutrophil extracellular traps (NETs) shown previously to stimulate pDCs to produce IFN-α. Consistent with these findings, we found that patients with IgG4-related AIP also exhibited pancreatic tissue localization of IFN-α–expressing pDCs and had significantly higher serum IFN-α levels than healthy controls. In addition, the inflamed pancreas of these patients but not controls also contained NETs that were shown to be capable of pDC activation. More importantly, patient pDCs cultured in the presence of NETs produced greatly increased levels of IFN-α and induced control B cells to produce IgG4 (but not IgG1) as compared with control pDCs. These data suggest that pDC activation and production of IFN-α is a major cause of murine AIP; in addition, the increased pDC production of IFN-α and its relation to IgG4 production observed in IgG4-related AIP suggest that this mechanism also plays a role in the human disease.
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a devastating complication of hematopoietic stem cell transplantation. TA-TMA likely represents the final stage of vascular endothelial injury; however, its pathophysiology is largely unknown, making clinical management difficult. Recently, the association of neutrophil extracellular traps (NETs) with the development of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome has been reported. Thus, we explored whether NETs are also relevant to the occurrence of TA-TMA. We retrospectively analyzed post-transplant trends of serum NET levels in 90 patients, 11 of whom developed TA-TMA. Relative to baseline (before the conditioning regimen), elevated serum NET levels either at 4 weeks after transplantation or as early as the day of transplantation were associated with significantly increased risk of TA-TMA. In contrast, thrombomodulin, a potential marker for TA-TMA, was not helpful to predict the occurrence of TA-TMA in our study. In addition, we directly detected glomerular deposition of NETs in 2 TA-TMA patients. Increased NET levels are a significant risk factor for TA-TMA, suggesting that NET level is a useful biomarker for TA-TMA.
In previous studies, we found that human IgG4-related autoimmune pancreatitis (AIP) and murine AIP are driven by activation of plasmacytoid dendritic cells (pDCs) producing IFN-α. In the present studies we examined additional roles of pDC-related mechanisms in AIP pathogenesis, particularly those responsible for induction of fibrosis. We found that in murine AIP (MRL/Mp mice treated with polyinosinic-polycytidylic acid) not only the pancreatic infiltration of immune cells but also the development of fibrosis were markedly reduced by the depletion of pDCs or blockade of type I IFN signaling; moreover, such treatment was accompanied by a marked reduction of pancreatic expression of IL-33. Conversely, polyinosinic-polycytidylic acid-induced inflamed pancreatic tissue in murine AIP exhibited increased expression of type I IFNs and IL-33 (and downstream IL-33 cytokines such as IL-13 and TGF-β1). pDCs stimulated by type I IFN were the source of the IL-33 because purified populations of these cells isolated from the inflamed pancreas produced a large amount of IL-33 upon activation by TLR9 ligands, and such production was abrogated by the neutralization of type I IFN. The role of IL-33 in murine AIP pathogenesis was surprisingly important because blockade of IL-33 signaling by anti-ST2 Ab attenuated both pancreatic inflammation and accompanying fibrosis. Finally, whereas patients with both conventional pancreatitis and IgG4-related AIP exhibited increased numbers of acinar cells expressing IL-33, only the latter also exhibited pDCs producing this cytokine. These data thus suggest that pDCs producing IFN-α and IL-33 play a pivotal role in the chronic fibro-inflammatory responses underlying murine AIP and human IgG4-related AIP.
It is well established that polymorphisms of the nucleotide-binding oligomerization domain 2 (NOD2) gene, a major risk factor in Crohn's disease (CD), lead to loss of NOD2 function. However, a molecular explanation of how such loss of function leads to increased susceptibility to CD has remained unclear. In a previous study exploring this question we reported that activation of NOD2 in human dendritic cells by its ligand, muramyl dipeptide (MDP) negatively regulates Toll-like receptor (TLR)-mediated inflammatory responses. Here we show that NOD2 activation results in increased interferon regulatory factor 4 (IRF4) expression and binding to TNF receptor associated factor 6 (TRAF6) and receptor interacting serine-threonine kinase (RICK). We then show that such binding leads to IRF4-mediated inhibition of Lys63-linked polyubiquitination of TRAF6 and RICK and thus to down-regulation of NF-κB activation. Finally, we demonstrate that protection of mice from the development of experimental colitis by MDP or IRF4 administration is accompanied by similar IRF4-mediated effects on polyubiquitination of TRAF6 and RICK in colonic lamina propria mononuclear cells. These findings thus define a mechanism of NOD2-mediated regulation of innate immune responses to intestinal microflora that could explain the relation of NOD2 polymorphisms and resultant NOD2 dysfunction to CD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.