Recently, type 2 diabetes mellitus (T2DM) has been reported to be strongly associated with Alzheimer’s disease (AD). This is partly due to insulin resistance in the brain. Insulin signaling and the number of insulin receptors may decline in the brain of T2DM patients, resulting in impaired synaptic formation, neuronal plasticity, and mitochondrial metabolism. In AD patients, hypometabolism of glucose in the brain is observed before the onset of symptoms. Amyloid-β accumulation, a main pathology of AD, also relates to impaired insulin action and glucose metabolism, although ketone metabolism is not affected. Therefore, the shift from glucose metabolism to ketone metabolism may be a reasonable pathway for neuronal protection. To promote ketone metabolism, medium-chain triglyceride (MCT) oil and a ketogenic diet could be introduced as an alternative source of energy in the brain of AD patients.
Alzheimer’s disease (AD) is a common neurodegenerative disease and a major contributor to progressive cognitive impairment in an aging society. As the pathophysiology of AD involves chronic neuroinflammation, the resolution of inflammation and the group of lipid mediators that actively regulate it—i.e., specialized pro-resolving lipid mediators (SPMs)—attracted attention in recent years as therapeutic targets. This review focuses on the following three specific SPMs and summarizes their relationships to AD, as they were shown to effectively address and reduce the risk of AD-related neuroinflammation: maresin 1 (MaR1), resolvin D1 (RvD1), and neuroprotectin D1 (NPD1). These three SPMs are metabolites of docosahexaenoic acid (DHA), which is contained in fish oils and is thus easily available to the public. They are expected to become incorporated into promising avenues for preventing and treating AD in the future.
Cerebral stroke is the leading cause of death and permanent disability in elderly persons. The impaired glucose and oxygen transport to the brain during ischemia causes bioenergetic failure, leading to oxidative stress, inflammation, bloodbrain barrier dysfunction, and eventually cell death. However, the development of effective therapies against stroke has been hampered by insufficient oral absorption of pharmaceuticals and subsequent delivery to the brain. Nanotechnology has emerged as a new method of treating cerebral diseases, with the potential to fundamentally change currently available therapeutic approaches using compounds with low bioavailability. This perspective review provides an overview of the therapeutic potential of oral nanomedicines for stroke, focusing on novel natural product-loaded delivery system with potent antioxidant and anti-inflammatory effects.
Combretastatin A4 disodium phosphate (CA4DP) is a prodrug of combretastatin A4 (CA4), a microtubule-disassembling agent that exhibits antitumor effects by inhibiting tumor cell proliferation and inducing morphological changes and apoptosis in vascular endothelial cells in tumors. However, cardiotoxicity induced by ischemia and hypertension is a severe adverse event. In this study, we focused on the fact that phosphodiesterase (PDE) 5 inhibitors dilate the heart and peripheral blood vessels and aimed to investigate whether co-administration of tadalafil, a PDE5 inhibitor, can attenuate cardiotoxicity without altering the antitumor effect of CA4DP.To investigate cardiotoxicity, CA4DP and/or tadalafil were administered to rats, and blood pressure, echocardiography, histopathology, and cGMP concentration in the myocardium were examined.Administration of CA4DP increased systolic blood pressure, decreased cardiac function, lowered cGMP levels in the myocardium, and led to necrosis of myocardial cells. Co-administration of tadalafil attenuated these CA4DP-induced changes. To investigate the antitumor effect, canine mammary carcinoma cell lines (CHMp-13a) and human umbilical vein endothelial cells were cultured with CA4 and/or tadalafil, and cell proliferation and endothelial vascular tube disruption were examined. CHMp-13a cells were transplanted into nude mice and treated with CA4DP and/or tadalafil. CA4-induced inhibition of cell proliferation and disruption of the endothelial vascular tube were not affected by co-treatment with tadalafil, and the antitumor effects of CA4DP in xenograft mice were not reduced by co-administration of tadalafil. 4These results revealed that myocardial damage induced by CA4DP was attenuated by co-administration of tadalafil while maintaining antitumor efficacy.
As the population ages, the question of how to prevent isolation among older people and increase their well-being becomes a social issue. It has often been argued that Information and Communication Technology (ICT) usage can be a solution to these challenges, but empirical studies have not shown consistent results. Moreover, there are even fewer studies targeting older people in Japan, which is the most aging country in the world. Therefore, using the psychological comprehensive data of Japanese people aged 60 and over recorded in World Values Survey Wave 7, we conducted a study to clarify the relationship between the ICT usage, social capital, and well-being of older people to make a meaningful contribution to policymakers and the scientific community. As a result of the analysis, it was shown that ICT usage indirectly enhances well-being by increasing social capital. This indicates that for older people, ICT usage does not have a large effect on enhancing well-being, but becomes sufficiently large only through the improvement of social capital. The pros and cons of such modern communication means should be utilized as a reference when considering the development of future communication means and a human coach—a person who supports the use of communication means by older people. In other words, to think about the spread of communication means to community-dwelling older people in the future, it is always necessary to think about technology usage emphasizing the relationship between older people and society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.