Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPKI (for MAP kinase). The (21,42,44). These enzymes are also stimulated in specialized cell types undergoing meiosis (18, 41), differentiation (4,5,16,19,35), or various stress responses (13,51). The signalling pathways leading to stimulation of MAP kinases under different conditions are activated variously by tyrosine kinases, protein kinase C (PKC), or G proteins, but the mechanisms by which these pathways act remain largely obscure. MAP kinases are unique in requiring both tyrosine and threonine phosphorylation to become active (1), and a single protein kinase responsible for both phosphorylation events has been isolated from several species (10,26,36,45,48
Traveling ionospheric disturbances generated by an epicentral ground/sea surface motion, ionospheric disturbances associated with Rayleigh‐waves as well as post‐seismic 4‐minute monoperiodic atmospheric resonances and other‐period atmospheric oscillations have been observed in large earthquakes. In addition, a giant tsunami after the subduction earthquake produces an ionospheric hole which is widely a sudden depletion of ionospheric total electron content (TEC) in the hundred kilometer scale and lasts for a few tens of minutes over the tsunami source area. The tsunamigenic ionospheric hole detected by the TEC measurement with Global Position System (GPS) was found in the 2011 M9.0 off the Pacific coast of Tohoku, the 2010 M8.8 Chile, and the 2004 M9.1 Sumatra earthquakes. This occurs because plasma is descending at the lower thermosphere where the recombination of ions and electrons is high through the meter‐scale downwelling of sea surface at the tsunami source area, and is highly depleted due to the chemical processes.
We identify a migrating source of high energy radiation, lasting for several minutes, attributed to thunderstorm activities through the observations of radiation, atmospheric electric field, and meteorological radar echoes at several points. Our findings indicate that the energetic radiation is emitted continuously from a downward hemispherical surface without lightning, the bottom of which is about 300 m above sea level, and this source of radiation moves from north to south above the observation site at the speed of about 7 m/s. The radiation source probably moves along with the negatively charged region of the cloud at the height of around 1 km, because the estimated migration of the radiation source is consistent with the observed movement of atmospheric electric field variation between ground‐based observation sites and with the wind speed and direction at about 1 km altitude. This movement implies that the intensive electric field produced by the charged region in the thundercloud generates a radiation source. In addition, our results suggest that the low altitude of radiation source is related to no lightning activity during the energetic radiation emission.
Protein kinase C (PKC)–potentiated inhibitory phosphoprotein of myosin phosphatase (CPI) was detected in human platelets. Like smooth muscle CPI-17, in vitro phosphorylation of platelet CPI by PKC inhibited the activity of myosin phosphatase containing the PP1δ catalytic subunit and the 130-kd myosin-binding subunit (MBS). Treatment of intact platelets with thrombin or the stable thromboxane A2 analog STA2 resulted in increased phosphorylation of both CPI and MBS at Thr-696, whereas phorbol myristate acetate (PMA) and the Ca++ ionophore ionomycin only induced CPI phosphorylation. PMA induced slow adenosine triphosphate (ATP) secretion of fura 2–loaded platelets with no change in cytosolic Ca++. The PMA-induced increase in CPI phosphorylation preceded phosphorylation of 20-kd myosin light chain (MLC20) at Ser-19 and ATP secretion. The PKC inhibitor, GF109203X, inhibited PMA-induced phosphorylation of CPI and MLC20 with similar IC50 values. These findings suggest that the activation of PKC by PMA induces MLC20phosphorylation by inhibiting myosin phosphatase through phosphorylation of CPI. STA2-induced MLC20phosphorylation was also diminished but not abolished by GF109203X, even at high concentrations that completely inhibited STA2-induced CPI phosphorylation. A combination of the Rho-kinase inhibitor Y-27632 and GF109203X led to a further decrease in STA2-induced MLC20 phosphorylation, mainly because of a significant inhibition of MBS phosphorylation at Thr-696. Inhibition of STA2-induced ATP release by Y-27632, GF109203X, or both appeared to correlate with the extent of MLC20 phosphorylation. Thus, CPI phosphorylation by PKC may participate in inhibiting myosin phosphatase, in addition to the Rho-kinase–mediated regulation of myosin phosphatase, during agonist-induced platelet secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.