Blast wave-induced traumatic injury from terrorist explosive devices can occur at any time in either military or civilian environments. To date, little work has focused on the central nervous system response to a non-penetrating blast injury. We have evaluated the effect of a single 80-psi blast-overpressure wave in a rat model. Histological and immunochemical studies showed an early inflammatory response, tissue damage and the initiation of apoptosis. With regard to inflammation, polymorphonuclear leukocytes and lymphocytes infiltrated brain parenchyma within 1 h post-blast. Glial-fibrillary protein, cyclo-oxygenase-2ir, interleukin-1β and tumor necrosis factor were present by 1 h and remained detectable at three weeks post-injury. High mobility group box-1 protein was detectable at three weeks. With regard to tissue damage, S100β and 4-hydroxynonenal were present at 1 h and remained detectable at three weeks. Amyloid precursor protein was detectable at three weeks. As for apoptosis, Cleaved Caspase-3 was detectable at three weeks. Morris water maze assessment of cognitive function showed that blast injured animals required significantly more time to reach the platform on day 1 of training and traveled a greater distance to get to the platform on days 1 and 2. Blast-injured animals showed a significant increase in swimming speed (p<0.001), increased total distance traveled (p<0.001) and increased number of entries into the previous quadrant that had contained the escape platform (p<0.05). Magnetic resonance imaging showed hyperintense regions in the somatosensory area within 1 h. T2 relaxation times and apparent diffusion coefficients show increasing trends in both somatosensory and cortical regions. These data indicate an early and lasting response of brain tissue to non-penetrating blast over-pressure injury. This early inflammatory response is indicative of a mild traumatic brain injury. There is evidence of early hippocampal dysfunction.
SYNOPSIS Diabetic cardiomyopathy refers to the changes in contractility that occur to the diabetic heart that can arise in the absence of vascular disease. Mitochondrial bioenergetic deficits and increased free radical production are pathological hallmarks of diabetic cardiomyopathy but the mechanisms and causal relationships between mitochondrial deficits and the progression of disease are not understood. We evaluated cardiac mitochondrial function in a rodent model of chronic type 1 diabetes (OVE26 mice) prior to onset of contractility deficits. We found that the most pronounced change in OVE26 heart mitochondria is severe metabolic inflexibility. This inflexibility is characterized by large deficits in mitochondrial respiration measured in the presence of non-fatty acid substrates. Metabolic inflexibility occurred concomitantly with decreased activities of pyruvate dehydrogenase and complex II. Hyper-acetylation of protein lysine was also observed. Treatment of control heart mitochondria with acetic anhydride, an acetylating agent, preferentially inhibited respiration by non-fatty acid substrates and increased superoxide production. We have concluded that metabolic inflexibility, induced by discrete enzymatic and molecular changes, including hyper-acetylation of protein lysines, precedes mitochondrial defects in a chronic rodent model of type 1 diabetes.
The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T1 relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and ‘normal’brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.
Current detection methods (computed tomography, ultrasound, and MRI) for hepatocarcinogenesis in humans rely on visual confirmation of neoplastic formations. A more effective early detection method is needed. Using in vivo magnetic resonance spectroscopy (MRS), we show that alterations in the integral ratios of the bis-allyl to vinyl hydrogen protons in unsaturated lipid fatty acyl groups correlate with the development of neoplastic formations in vivo in a TGFa/c-myc mouse hepatocellular carcinoma (HCC) model. HPLC analysis of the TGFa/c-myc mice liver tissue revealed a significant increase in the amount of oleic acid, along with alterations in linoleic and g-linolenic acids, as compared with control CD1 mice. Electrospray ionization tandem mass spectrometry analysis indicated a significant increase in the abundance of specific glycerol phosphatidylcholine (GPCho) lipids containing palmitic and oleic acids between control CD1 and TGFa/c-myc mice liver tissue extracts. Western blot analysis of the mice liver tissue indicates alterations in the desaturase enzyme stearoyl CoA desaturase (SCD)1, responsible for palmitic and oleic acid formation. Microarray analysis detected alterations in several genes involved with fatty acid metabolism, particularly SCD2, in transgenic mouse liver tissue. In correlation with the HPLC, mass spectrometry, Western blot, and microarray analyses, we are able to confirm the ability of in vivo MRS to detect precancerous lesions in the mouse liver before visual neoplastic formations were detectable by MRI. Hepatocellular carcinoma (HCC) is one of the most deadly forms of cancer in the world. The World Health Organization reports that liver cancer is the third highest cause of death from cancer, with HCC being predominantly observed in Asian and African countries (1). There are many known causes of HCC, including hepatitis B and C, cirrhosis, and aflatoxin exposure. The techniques currently used for diagnosis of liver cancer rely on imaging modalities (MRI, computed tomography, and ultrasound) that, at the highest sensitivity, are able to detect evidence of neoplasia when there is a formation of at least 1 mm. Image confirmation of a neoplasm this size usually only occurs at a later stage in cancer development when therapy treatments are not as effective. Therefore, the prognosis for a patient when they have visual evidence of neoplasia is poor. Additionally, neoplasms at the lower range of imaging detection are often unverifiable without biopsy. There is a need, therefore, to develop a method that can detect neoplastic formations at an earlier stage than those now in use.The efficacy of utilizing MRI, which mainly detects only protons from water hydrogens, for hepatic tumor detection and the measurement of tumor volumetric growth has been established previously (2, 3). We have utilized MRI in this study for visual confirmation of neoplastic tissue formations in the TGFa/c-myc mouse liver tumor model. In addition to the MRI visible liver changes, there have been several metabolic ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.