An enantioselective protonation strategy has been successfully applied to the synthesis of chiral α-tertiary azaarenes. With a dual catalytic system involving a chiral phosphoric acid and a dicyanopyrazine-derived chromophore (DPZ) photosensitizer that is mediated by visible light, a variety of α-branched 2-vinylpyridines and 2-vinylquinolines with N-aryl glycines underwent a redox-neutral, radical conjugate addition-protonation process and provided valuable chiral 3-(2-pyridine/quinoline)-3-substituted amines in high yields with good to excellent enantioselectivities (up to >99% ee). An application of this methodology to a two-step synthesis of the enantiomerically pure medicinal compound pheniramine (Avil) is also presented.
Radical addition to olefins is a common and useful chemical transformation. In the context of offering enantioenriched three-dimensional molecules via such a highly reactive process, chiral hydrogen-bonding (H-bonding) catalysis has...
An enantioselective intermolecular [3 + 2] cycloaddition of N-arylcyclopropylamines with 2-aryl acrylates/ketones and cyclic ketone-derived terminal olefins via asymmetric photoredox catalysis is reported. A dual catalyst system involving DPZ and a chiral phosphoric acid is effective for the transformations, leading to a wide array of valuable cyclopentylamines with high yields, ee's, and drs. Among them, elaborate modulation of the ester group of 2aryl acrylates was shown to be effective in improving reactivity, thereby enabling the success of the transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.