The purpose of this study was to conduct a cone-beam computed tomographic (CBCT) investigation on the root and canal configuration of the mandibular first molars, especially the morphology of the disto-lingual (DL) root, in a Chinese subpopulation. A total of 910 CBCT images of the mandibular first molars were collected from 455 patients who underwent CBCT examinations as a preoperative assessment for implants or orthodontic treatment. The following information was analyzed and evaluated: tooth position, gender, root and root canal number per tooth, root canal type of the mesial root(s) and distal root(s), angle of the DL root canal curvature, distance between two distal canal orifices in the teeth with DL root, and angle of disto-buccal canal orifice–disto-lingual canal orifice–mesio-lingual canal orifice (DB-DL-ML). Most of the mandibular first molars (64.9%, n = 591) had two roots with three root canals, and most of the mesial root canals (87.7%, n = 798) were type VI. The prevalence of the DL root was 22.1% (n = 201). The right side had a higher prevalence of DL root than the left side (p<0.05). Additionally, the curvature of the DL root canal were greater in the bucco-lingual (BL) orientation (30.10°±14.02°) than in the mesio-distal (MD) orientation (14.03°± 8.56°) (p<0.05). Overall there was a high prevalence of DL root in the mandibular first molars, and most of the DL roots were curved in different degrees. This study provided detailed information about the root canal morphology of the mandibular first molars in a Chinese subpopulation.
Edible fungus Poria cocos (Schw.) Wolf is a cooking material that has myriad health benefits. However, its active constituents have not been well-defined. We previously purified an immunomodulatory protein, PCP, from P. cocos and described its biochemical features and its ability to activate primary macrophage via TLR4. In this study, we cloned the gene of PCP and demonstrated its ability to activate Th1 response in cell cultures and in mice. The complete cDNA sequence of PCP consisted of 807 bp, which included a 579 bp coding sequence that encoded 194 amino acids. With the addition of co-stimulatory CD3/CD28 signals, PCP significantly increased the surface expression of CD44 and CD69 on effector T cells. PCP could also up-regulate T-bet and STAT4 expressions and IFN-γ and IL-2 secretions. Oral administration of PCP suppressed the production of both total and OVA-specific IgG1 in serum and enhanced the amounts of serum and OVA-specific IgG2a and Th1-related cytokine production in BALB/c splenocytes. In addition, oral administration of PCP significantly reduced IL-4 and IgE expressions in a murine model of atopic dermatitis. In conclusion, these results provide evidence that PCP could regulate mammalian immune cells and reveal their pharmaceutical potential in developing therapeutic strategies against Th2-mediated immune disorders.
Background: Stem cells from apical papilla (SCAP) located in the root apex of immature permanent teeth are a reliable cell source for pulp-dentine complex regeneration. Mineral trioxide aggregate (MTA) is a biocompatible material which has been widely used in endodontic treatments. The aim of this study was to elucidate the regulatory role of MTA in the proliferation and differentiation of SCAP. Methods: Cell viability was detected by Cell counting kit-8. Characteristics of SCAP were confirmed by Flow cytometric (FCM) analysis and alizarin red staining. Then, MTA-mediated osteo/odontogenic differentiation of SCAP was investigated by reverse transcription polymerase chain reaction. The effect of MAPKs on MTA-mediated osteo/ odontogenic differentiation was evaluated by western blot analysis.Results: There was no significant difference in cell viability between the control group and the group with lower concentrations of MTA. However, higher concentrations of MTA could inhibit proliferation of SCAP. It is demonstrated that the ALP activity were enhanced, the mRNA and protein expression of BSP, OCN, DSPP, Runx2 were up-regulated. In addition, phosphorylation proteins of ERK, p38 were activated through western blot analysis.Conclusions: MTA at appropriate concentration could enhance osteo/odontogenic differentiation of SCAP by activating p38 and ERK signaling pathways. This study provides a new idea for the clinical application of MTA and the treatment of endodontic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.