The ability of neurotrophins to modulate the survival and differentiation of neuronal populations involves the Trk/MAP (mitogen-activated protein kinase) kinase signaling pathway. More
Abstract-Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. Our previous studies demonstrated an important interaction between nuclear factor-B (NF-B) activation and homocysteine (
-Hyperhomocysteinemia is an independent risk factor for cardiovascular disorders. Elevated plasma homocysteine (Hcy) concentration is associated with other cardiovascular risk factors. We previously reported that Hcy stimulated cholesterol biosynthesis in HepG2 cells. In the present study, we investigated the underlying mechanisms of Hcy-induced hepatic cholesterol biosynthesis in an animal model. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a highmethionine diet for 4 wk. The mRNA expression and the enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were significantly increased in livers of hyperhomocysteinemic rats. There were marked hepatic lipid accumulation and an elevation of plasma cholesterol concentration in hyperhomocysteinemic rats. Three transcription factors, namely, sterol regulatory element-binding protein-2 (SREBP-2), cAMP response element-binding protein (CREB), and nuclear factor Y (NF-Y) were activated in livers of hyperhomocysteinemic rats. Upon Hcy treatment of hepatocytes, there was a significant increase in HMG-CoA reductase mRNA expression in these cells. The activation of SREBP-2, CREB, and NF-Y preceded the increase in HMG-CoA reductase expression in Hcy-treated cells. Pretreatment of hepatocytes with inhibitors for transcription factors not only blocked the activation of SREBP-2, CREB, and NF-Y but also attenuated Hcy-induced HMG-CoA reductase mRNA expression. These results suggested that hyperhomocysteinemia-induced activation of SREBP-2, CREB, and NF-Y was responsible for increased cholesterol biosynthesis by transcriptionally regulating HMG-CoA reductase expression in the liver leading to hepatic lipid accumulation and subsequently hypercholesterolemia. In conclusion, the stimulatory effect of Hcy on hepatic cholesterol biosynthesis may represent an important mechanism for hepatic lipid accumulation and cardiovascular disorder associated with hyperhomocysteinemia.homocysteine; 3-hydroxy-3-methylglutaryl coenzyme A reductase; cAMP response element-binding protein; sterol regulatory elementbinding protein-2; nuclear factor Y HYPERHOMOCYSTEINEMIA, an elevation of blood homocysteine (Hcy) concentration, is considered an independent risk factor for cardiovascular and cerebrovascular disorders (7,37,48). The mechanisms responsible for hyperhomocysteinemia-associated cardiovascular disorders are still under investigation.
Cystathionine-β-synthase (CBS) catalyzes the rate-limiting step in the transsulfuration pathway for the metabolism of homocysteine (Hcy) in the kidney. Our recent study demonstrates that ischemia-reperfusion reduces the activity of CBS leading to Hcy accumulation in the kidney, which in turn contributes to renal injury. CBS is also capable of catalyzing the reaction of cysteine with Hcy to produce hydrogen sulfide (H2S), a gaseous molecule that plays an important role in many physiological and pathological processes. The aim of the present study was to examine the effect of ischemia-reperfusion on CBS-mediated H2S production in the kidney and to determine whether changes in the endogenous H2S generation had any impact on renal ischemia-reperfusion injury. The left kidney of Sprague-Dawley rat was subjected to 45-min ischemia followed by 6-h reperfusion. The ischemia-reperfusion caused lipid peroxidation and cell death in the kidney. The CBS-mediated H2S production was decreased, leading to a significant reduction in the renal H2S level. The activity of cystathionine-γ-lyase, another enzyme responsible for endogenous H2S generation, was not significantly altered in the kidney upon ischemia-reperfusion. Partial restoration of CBS activity by intraperitoneal injection of the nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide not only increased renal H2S levels but also alleviated ischemia-reperfusion-induced lipid peroxidation and reduced cell damage in the kidney tissue. Furthermore, administration of an exogenous H2S donor, NaHS (100 μg/kg), improved renal function. Taken together, these results suggest that maintenance of tissue H2S level may offer a renal protective effect against ischemia-reperfusion injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.