Autoregressive exogenous, hereafter ARX, models are widely adopted in time series-related domains as they can be regarded as the combination of an autoregressive process and a predictive regression. Within a more complex structure, extant diagnostic checking methods face difficulties in remaining validity in many conditions existing in real applications, such as heteroscedasticity and error correlations exhibited between the ARX model itself and its exogenous processes. For these reasons, we propose a new serial correlation test method based on the profile empirical likelihood. Simulation results, as well as two real data examples, show that our method has a good performance in all mentioned conditions.
Testing predictability is known to be an important issue for the balanced predictive regression model. Some unified testing statistics of desirable properties have been proposed, though their validity depends on a predefined assumption regarding whether or not an intercept term nevertheless exists. In fact, most financial data have endogenous or heteroscedasticity structure, and the existing intercept term test does not perform well in these cases. In this paper, we consider the testing for the intercept of the balanced predictive regression model. An empirical likelihood based testing statistic is developed, and its limit distribution is also derived under some mild conditions. We also provide some simulations and a real application to illustrate its merits in terms of both size and power properties.
Serial Correlation in a General d-factor Model with Possible Infinite Variance, is referred to as Fanetal22. All of the notations used below are consistent with those introduced in Fanetal22. In the sequel, we use α 0 and β 0 to stand for the true values of α and β, respectively.The following technical lemmas are presented before proceeding forward.Lemma 1. Under the same conditions as Theorem 1, we have that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.