Accurate and reliable seasonal climate forecasts are frequently sought by climate-sensitive sectors to support decision-making under climate variability and change. Temperature trend is discernible globally over the past decades, but seasonal forecasts produced by a global climate model (GCM) generally underestimate such trend. Current statistical methods used for calibrating seasonal climate forecasts mostly do not explicitly account for climate trends. Consequently, the calibrated forecasts also fail to capture the observed trend. Solving this problem can enhance user confidence in seasonal climate forecasts. In this study, we extend the capability of the Bayesian joint probability (BJP) modelling approach for statistical calibration of seasonal climate forecasts. A trend component is introduced into the BJP algorithm for embedding the observed trend into calibrated ensemble forecasts. We apply the new model (named BJP-t) to three test stations in Australia. Seasonal forecasts of daily maximum temperatures from the SEAS5 model, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), are calibrated and evaluated. The BJP-t calibrated ensemble forecasts can reproduce the observed trend, when the raw ensemble forecasts and the BJP calibrated ensemble forecasts both fail to do so. The BJP-t calibration leads to more skilful, more reliable and sharper forecasts than the BJP calibration.
For managing climate variability and adapting to climate change, seasonal forecasts are widely produced to inform decision making. However, seasonal forecasts from global climate models are found to poorly reproduce temperature trends in observations. Furthermore, this problem is not addressed by existing forecast post-processing methods that are needed to remedy biases and uncertainties in model forecasts. The inability of the forecasts to reproduce the trends severely undermines user confidence in the forecasts. In our previous work, we proposed a new statistical post-processing model that counteracted departures in trends of model forecasts from observations. Here, we further extend this trend-aware forecast post-processing methodology to carefully treat the trend uncertainty associated with the sampling variability due to limited data records. This new methodology is validated on forecasting seasonal averages of daily maximum and minimum temperatures for Australia based on the SEAS5 climate model of the European Centre for Medium-Range Weather Forecasts. The resulting post-processed forecasts are shown to have proper trends embedded, leading to greater accuracy in regions with significant trends. The application of this new forecast post-processing is expected to boost user confidence in seasonal climate forecasts.
Climate trends have been observed over the recent decades in many parts of the world, but current global climate models (GCMs) for seasonal climate forecasting often fail to capture these trends. As a result, model forecasts may be biased above or below the trendline. In our previous research, we developed a trend-aware forecast post-processing method to overcome this problem. The method was demonstrated to be effective for embedding observed trends into seasonal temperature forecasts. In this study, we further develop the method for post-processing GCM seasonal precipitation forecasts. We introduce new formulation and evaluation features to cater for special characteristics of precipitation amounts, such as having a zero lower bound and highly positive skewness. We apply the improved method to calibrate ECMWF SEAS5 forecasts of seasonal precipitation for Australia. Our evaluation shows that the calibrated forecasts reproduce observed trends over the hindcast period of 36 years. In some regions where observed trends are statistically significant, forecast skill is greatly improved by embedding trends into the forecasts. In most regions, the calibrated forecasts outperform the raw forecasts in terms of bias, skill, and reliability. Wider applications of the new trend-aware post-processing method are expected to boost user confidence in seasonal precipitation forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.