Heavy metal ions (HMIs) pose a serious threat to the environment and human body because they are toxic and non-biodegradable and widely exist in environmental ecosystems. It is necessary to develop a rapid, sensitive and convenient method for HMIs detection to provide a strong guarantee for ecology and human health. Ion-imprinted electrochemical sensors (IIECSs) based on nanomaterials have been regarded as an excellent technology because of the good selectivity, the advantages of fast detection speed, low cost, and portability. Electrode surfaces modified with nanomaterials can obtain excellent nano-effects, such as size effect, macroscopic quantum tunneling effect and surface effect, which greatly improve its surface area and conductivity, so as to improve the detection sensitivity and reduce the detection limit of the sensor. Hence, the present review focused on the fundamentals and the synthetic strategies of ion-imprinted polymers (IIPs) and IIECSs for HMIs detection, as well as the applications of various nanomaterials as modifiers and sensitizers in the construction of HMIIECSs and the influence on the sensing performance of the fabricated sensors. Finally, the potential challenges and outlook on the future development of the HMIIECSs technology were also highlighted. By means of the points presented in this review, we hope to provide some help in further developing the preparation methods of high-performance HMIIECSs and expanding their potential applications.
The urgent problem to be solved in heavy oil exploitation is to reduce viscosity and improve fluidity. Emulsification and viscosity reduction technology has been paid more and more attention and its developments applied. This paper studied the viscosity reduction performance of three types of viscosity reducers and obtained good results. The viscosity reduction rate, interfacial tension, and emulsification performance of three types of viscosity reducers including anionic sulfonate, non-ionic (polyether and amine oxide), and amphoteric betaine were compared with Daqing crude oil. The results showed that the viscosity reduction rate of petroleum sulfonate and betaine was 75–85%. The viscosity reduction rate increased as viscosity reducer concentration increased. An increase in the oil–water ratio and polymer decreased viscosity reduction. When the concentration of erucamide oxide was 0.2%, the ultra-low interfacial tension was 4.41 × 10−3 mN/m. When the oil–water ratio was 1:1, the maximum water separation rates of five viscosity reducers were different. With an increase in the oil–water ratio, the emulsion changed from o/w emulsion to w/o emulsion, and the stability was better. Erucamide oxide and erucic betaine had good viscosity reduction and emulsification effects on Daqing crude oil. This work can enrich knowledge of the viscosity reduction of heavy oil systems with low relative viscosity and enrich the application of viscosity reducer varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.