PurposeThe purpose of the present study was to investigate the effect of sesame oil on the reproductive parameters of diabetic male Wistar rats.Materials and MethodsThe adult male rats in a split plot design were divided into normal (n=10), normal 5% (n=5; 5% sesame oil enriched diet), diabetic (Streptozocin induced diabetes; n=9), diabetic 5% (n=9; 5% sesame oil enriched diet), and diabetic 10% (n=9; 10% sesame oil enriched diet) groups. Diet supplementation continued for 56 days.ResultsSesame oil supplementation did not reduce the plasma glucose concentration of rats in the diabetic groups (p>0.05). The total spermatogonia, spermatocytes, Leydig cells/tubule, and the germ cell to Sertoli cell ratio were lower in the diabetic rats than the normal ones (p<0.05), and with the exception of spermatogonia counts, these values improved by the addition of sesame oil to the diet (p<0.05). The sperm progressive motility and viability were lower in the diabetic rats (p<0.05) and sesame oil supplementation did not improve them. Incorporation of sesame oil into the diet improved the plasma testosterone concentration of the diabetic rats in a dose-dependent manner (p<0.05).ConclusionsIn summary, sesame oil supplementation improved the reproductive parameters of diabetic rats at the levels of the testicular microstructure and function, but was not effective in protecting the epididymal sperm.
The detailed morphology and topography of the cranial cervical ganglion (CCG) with its surrounding structures were studied in 10 sides of five heads of adult one-humped camel to determine its general arrangement as well as its differences and similarities to other animals. The following detailed descriptions were obtained: (1) the bilateral CCG was constantly present caudal to cranial base at the rostroventral border of the occipital condyle over the caudolateral part of nasopharynx; (2) the CCG was always in close relations medially with the longus capitis muscle, rostrolaterally with the internal carotid artery, and caudally with the vagus nerve; and (3) the branches of the CCG were the internal carotid and external carotid nerves, jugular nerve, cervical interganglionic branch, laryngopharyngeal branch, carotid sinus branch and communicating branches to the vagus, and first spinal nerves. In conclusion, there was no variation regarding topography of dromedary CCG among the specimens, in spite of typical variations in number, and mainly in origin of nerve branches ramifying from the CCG. In comparative anatomy aspect, the close constant relations, and presence of major nerves (internal/external carotid and jugular nerves) of dromedary CCG exhibited a typical reported animal's pattern. However, the shape, structures lateral to the CCG, the origin and course pattern of external carotid and jugular nerves, the number of the major nerves branches, the communicating branches of the CCG to the spinal and cranial nerves, and the separation of most rostral parts of vagosympathetic trunk of dromedary were different from those of most reported animals.
NOURINEZHAD, J.; MAZAHERI, Y. & SABERIFAR, S.Topography and morphology of the bovine cranial cervical ganglion and its branches. Int. J. Morphol., 34(2):545-556, 2016. SUMMARY:A detailed submacroscopic anatomical study of the cranial cervical ganglion (CCG) and its branches with its adjoining structures was carried out by examining 14 halves of seven heads of Holstein cattle under a magnifying lens to provide comprehensive descriptions with color photographs of the location, relation to neighboring structures, morphometry, and morphology of CCG and its branches. Our results were compared with previously nerves including jugular nerve; internal and external carotid nerves extremely, obtained morphological data on CCG in other ungulates to clarify the detailed comparative anatomy of CCG among them. The morphology of CCG and its branches in bovine was significantly and tangibly different from that of in other reported ungulates, especially in the direction of the ventral and dorsal poles of CCG being caudodorsal and rostroventral respectively, being larger and slightly more rostral, covered laterally by the dorsal part of the stylohyoid bone and caudal stylopharyngeus muscle, close relation of CCG to the medial retropharyngeal lymph node, wider distributions of external carotid nerve and its plexus to the adjacent arteries and visceral structures, lacking a communicating branch with the cervical spinal nerve, although all typical branches including the jugular nerve, carotid sinus branch, internal and external carotid nerves, communicating branches to vagus, glossopharyngeal, hypoglossal, cranial laryngeal, pharyngeal branch of vagus nerves, and close relationship between CCG and the longus capitis muscle, vagus nerve, and internal carotid artery were almost consistently present among the ungulates. The site of origin and the number of the major nerves including jugular nerve, internal and external carotid nerves extremely differed among the ungulates.
Dromedary camels are large even-toed ungulates which are well adapted to life in large deserts. Examinations of their feet have revealed many structural peculiarities. We have measured the digital bones of the dromedary in order to determine whether there are morphometric variations in the digital bones between the lateral and medial sides in individual limbs and/or in the right and left thoracic and pelvic limbs, with the aim to clarify whether there are anatomical differences in the digital bones of dromedary as a suborder of the order Artiodactyla. Measurements were made of 240 lateral and medial proximal, middle, and distal phalanges in the left and right thoracic and pelvic limbs of ten healthy adult male dromedaries, ranging in age from 6 to 10 years. A total of 17 linear dimensions were measured using a caliper. The results indicate that there are no significant differences between corresponding measurements of digital bones of the lateral and medial in the same limb, nor between measurements of the right and left sides. The lengths and widths of the proximal and middle, and distal phalanges in the thoracic limb were found to be greater than those of the pelvic limb. The sum of the total lengths of the three phalanges of the thoracic limbs was 15 mm greater than that of the phalanges of the pelvic limbs due to a longer proximal phalanx (76 %) and middle phalanx of the former (24 %). The perspectives obtained by our morphometric study of dromedary digital bones not only provide a tool to distinguish the osteological remains of the dromedary from those of the Bactrian camel or other artiodactyls in archaeological sites, but they also suggest a possible influence of digital structure on digit functions and digital disorders.
The objective of this study was to clarify the typical architecture and morphological variations of cervical sympathetic trunk (CST) in sheep during fetal period. Components of CST were examined on both sides of 40 male and female sheep fetuses aged from 60 to 140 days under a stereomicroscope. Skeletotopy and frequency of presence of cranial cervical ganglion (CCG), syntopy of cervical ganglia, and composition and topography of vagosympathetic trunk were consistent among specimens whereas the shape of cervical ganglia, the skeletotopy and number of three middle cervical ganglia (MG), and the frequency of communicating branches of CCG to the first cervical spinal nerve exhibited differences during fetal period. A reduction in the number of MG and the caudal movement of main MG were noted by increasing fetal age. Based on these detailed findings, comparative and developmental anatomy and evolutionary changes are discussed and compared with previous studies. The number of MG, skeletotopy of CCG and main MG, the number and range of communicating branches of CCG to spinal nerves, and the association of vagus and sympathetic nerves in fetal sheep were fundamentally different from those of mostly reported species. These results suggest that data obtained from CST of fetal sheep are significantly different from those obtained from humans, and it is problematic to apply them to humans because of the more cranial position of CCG, very narrow contribution of CCG to spinal nerve, absence of the vertebral ganglion, existence of multiple MG, and no communicating branches from MG to spinal nerves. Anat Rec, 300:2250-2262, 2017. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.