BackgroundCo production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide.MethodsTo study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp.ResultsAmong this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were bla
TEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone.Conclusionβ-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae.
In this prospective study, consecutive isolates of Klebsiella pneumoniae were tested for different mechanisms of carbapenem resistance using the modified Hodge test (MHT), Rosco Neo-Sensitabs (ROSCO). Phenylalanine arginine beta-naphthylamide assay (PABN) inhibitor-based test was done on isolates in which the mechanism of resistance was not identifiable by the ROSCO. Among 105 selected isolates, carbapenemase production was noted in 100 (95%) by MHT and ROSCO showed 97 (92·4%) inhibition with dipicolinic acid signifying the production of MBL. PCR amplification was positive in 90 (86%) isolates for bla(NDM-1) and 46 (44%) isolates for bla(OXA-48). 54 (51%) isolates were positive for bla(CTX-M) and all belonged to bla(CTX-M) group 1. Isolates co produced bla(OXA-48) (31/105, 30%) and bla(CTX-M) (40/105, 38%) in combination with the carbapenemase (bla(NDM-1)) gene. Five colistin-resistant isolates were positive for bla(OXA-48). Eight isolates did not show inhibition with any of the inhibitor containing disks and found to be positive for bla(OXA-48). Isolates were tested for colistin-meropenem synergy and detection rate was higher by the checkerboard (48%) than E-test method (35%). Our study necessitates continuous surveillance to recognize the predominant machinery of resistance in a particular geographical region to formulate effective control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.