Van der Waals growth of GaAs on silicon using a two‐dimensional layered material, graphene, as a lattice mismatch/thermal expansion coefficient mismatch relieving buffer layer is presented. Two‐dimensional growth of GaAs thin films on graphene is a potential route towards heteroepitaxial integration of GaAs on silicon in the developing field of silicon photonics. Hetero‐layered GaAs is deposited by molecular beam epitaxy on graphene/silicon at growth temperatures ranging from 350 °C to 600 °C under a constant arsenic flux. Samples are characterized by plan‐view scanning electron microscopy, atomic force microscopy, Raman microscopy, and X‐ray diffraction. The low energy of the graphene surface and the GaAs/graphene interface is overcome through an optimized growth technique to obtain an atomically smooth low temperature GaAs nucleation layer. However, the low adsorption and migration energies of gallium and arsenic atoms on graphene result in cluster‐growth mode during crystallization of GaAs films at an elevated temperature. In this paper, we present the first example of an ultrasmooth morphology for GaAs films with a strong (111) oriented fiber‐texture on graphene/silicon using quasi van der Waals epitaxy, making it a remarkable step towards an eventual demonstration of the epitaxial growth of GaAs by this approach for heterogeneous integration.
a b s t r a c tA novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (θ-2θ scan, ω-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smooth GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.