Effective screening of SARS-CoV-2 enables quick and efficient diagnosis of COVID-19 and can mitigate the burden on healthcare systems. Prediction models that combine several features to estimate the risk of infection have been developed. These aim to assist medical staff worldwide in triaging patients, especially in the context of limited healthcare resources. We established a machine-learning approach that trained on records from 51,831 tested individuals (of whom 4769 were confirmed to have COVID-19). The test set contained data from the subsequent week (47,401 tested individuals of whom 3624 were confirmed to have COVID-19). Our model predicted COVID-19 test results with high accuracy using only eight binary features: sex, age ≥60 years, known contact with an infected individual, and the appearance of five initial clinical symptoms. Overall, based on the nationwide data publicly reported by the Israeli Ministry of Health, we developed a model that detects COVID-19 cases by simple features accessed by asking basic questions. Our framework can be used, among other considerations, to prioritize testing for COVID-19 when testing resources are limited.
Motivation Differential network analysis, designed to highlight network changes between conditions, is an important paradigm in network biology. However, differential network analysis methods have been typically designed to compare between two conditions and were rarely applied to multiple protein interaction networks (interactomes). Importantly, large-scale benchmarks for their evaluation have been lacking. Results Here, we present a framework for assessing the ability of differential network analysis of multiple human tissue interactomes to highlight tissue-selective processes and disorders. For this, we created a benchmark of 6499 curated tissue-specific Gene Ontology biological processes. We applied five methods, including four differential network analysis methods, to construct weighted interactomes for 34 tissues. Rigorous assessment of this benchmark revealed that differential analysis methods perform well in revealing tissue-selective processes (AUCs of 0.82–0.9). Next, we applied differential network analysis to illuminate the genes underlying tissue-selective hereditary disorders. For this, we curated a dataset of 1305 tissue-specific hereditary disorders and their manifesting tissues. Focusing on subnetworks containing the top 1% differential interactions in disease-relevant tissue interactomes revealed significant enrichment for disorder-causing genes in 18.6% of the cases, with a significantly high success rate for blood, nerve, muscle and heart diseases. Summary Altogether, we offer a framework that includes expansive manually curated datasets of tissue-selective processes and disorders to be used as benchmarks or to illuminate tissue-selective processes and genes. Our results demonstrate that differential analysis of multiple human tissue interactomes is a powerful tool for highlighting processes and genes with tissue-selective functionality and clinical impact. Availability and implementation Datasets are available as part of the Supplementary data. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation The distinct functionalities of human tissues and cell types underlie complex phenotype-genotype relationships, yet often remain elusive. Harnessing the multitude of bulk and single-cell human transcriptomes while focusing on processes can help reveal these distinct functionalities. Results The Tissue-Process Activity (TiPA) method aims to identify processes that are preferentially active or under-expressed in specific contexts, by comparing the expression levels of process genes between contexts. We tested TiPA on 1,579 tissue-specific processes and bulk tissue transcriptomes, finding that it performed better than another method. Next, we used TiPA to ask whether the activity of certain processes could underlie the tissue-specific manifestation of 1,233 hereditary diseases. We found that 21% of the disease-causing genes indeed participated in such processes, thereby illuminating their genotype-phenotype relationships. Lastly, we applied TiPA to single-cell transcriptomes of 108 human cell types, revealing that process activities often match cell type identities and can thus aid annotation efforts. Hence, differential activity of processes can highlight the distinct functionality of tissues and cells in a robust and meaningful manner. Availability TiPA code is available in GitHub (https://github.com/moranshar/TiPA). In addition, all data are available as part of the Supplementary Information. Supplementary information Supplementary data are available at Bioinformatics online.
Bloodstream infections (BSI) are a main cause of infectious disease morbidity and mortality worldwide. Early prediction of BSI patients at high risk of poor outcomes is important for earlier decision making and effective patient stratification. We developed electronic medical record-based machine learning models that predict patient outcomes of BSI. The area under the receiver-operating characteristics curve was 0.82 for a full featured inclusive model, and 0.81 for a compact model using only 25 features. Our models were trained using electronic medical records that include demographics, blood tests, and the medical and diagnosis history of 7889 hospitalized patients diagnosed with BSI. Among the implications of this work is implementation of the models as a basis for selective rapid microbiological identification, toward earlier administration of appropriate antibiotic therapy. Additionally, our models may help reduce the development of BSI and its associated adverse health outcomes and complications.
Motivation: Effective screening of SARS-CoV-2 enables quick and efficient diagnosis of COVID-19 and can mitigate the burden on healthcare systems. Prediction models that combine several features to estimate the risk of infection have been developed in hopes of assisting medical staff worldwide in triaging patients when allocating limited healthcare resources. Results: We established a machine learning approach that trained on records from 51,831 tested individuals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.